题目
Given a linked list, return the node where the cycle begins. If there is no cycle, returnnull.
Follow up:
Can you solve it without using extra space?
代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
if(!head )
return nullptr;
ListNode *fast=head,*slow=head;//快慢指针的声明与初始化:直接等于头结点就行
while(fast && fast->next ){
fast=fast->next->next;
slow=slow->next;
if(fast==slow)
break;
}
if(!fast || !fast->next)
return nullptr;
while(slow && slow!=head){
slow=slow->next;
head=head->next;
}
return head;
}
};
细节
-
快慢指针的声明与初始化:直接等于头结点就行
ListNode *fast=head,*slow=head;
-
如何证明如果有环,快慢指针一定会在环里相遇?
设慢指针走的路程为SslowS_{slow}Sslow,快指针走的路程为SfastS_{fast}Sfast,由于lenA是它们必经之路,所以它们之间的差距只能是圆周长的倍数,快指针只是比慢指针多绕了圆若干圈(不妨即为k圈)Sfast−Sslow=(x+y)kS_{fast}-S_{slow}=(x+y)kSfast−Sslow=(x+y)k所以它们一定会在圆内某个点(不妨即为pos点)相遇的。 -
如何证明快慢指针第一次相遇时慢指针还没走完1圈?
反证:假设快慢指针第一次相遇时慢指针已经走完了r圈,则有(1)Sslow=lenA+(x+y)r+xS_{slow}=lenA+(x+y)r+x\tag1Sslow=lenA+(x+y)r+x(1)(2)Sfast=lenA+(x+y)(r+k)+xS_{fast}=lenA+(x+y)(r+k)+x\tag2Sfast=lenA+(x+y)(r+k)+x(2)(3)Sfast=2SslowS_{fast}=2S_{slow}\tag3Sfast=2Sslow(3)由上述3式可得(4)Sfast−2(x+y)r=Sslow−(x+y)rS_{fast}-2(x+y)r=S_{slow}-(x+y)r\tag4Sfast−2(x+y)r=Sslow−(x+y)r(4)即(5)Sfast′≜lenA+(x+y)(k−r)+x=2(lenA+x)≜2Sslow′S_{fast}^{'}\triangleq lenA+(x+y)(k-r)+x=2(lenA+x)\triangleq 2S_{slow}^{'}\tag5Sfast′≜lenA+(x+y)(k−r)+x=2(lenA+x)≜2Sslow′(5)若k≤rk\le rk≤r则等式5不成立,即等式3不成立,反证结束;
若k>rk>rk>r则等式5成立,说明在慢指针走完r圈与快指针相遇时,已经在第一圈没走完的时候遇过快指针1次了,反证结束。 -
如何证明快慢指针首次相遇后,慢指针和头指针最后会在入口点相遇?
即证lenA=y+(x+y)k2lenA=y+(x+y)k_2lenA=y+(x+y)k2
由快慢指针首次相遇时满指针还没走完一圈可得lenA+(x+y)k+x=2(lenA+x)lenA+(x+y)k+x=2(lenA+x)lenA+(x+y)k+x=2(lenA+x)即lenA+x=(x+y)k=(x+y)(k−1)+y+xlenA+x=(x+y)k=(x+y)(k-1)+y+xlenA+x=(x+y)k=(x+y)(k−1)+y+x令k2=k−1k_2=k-1k2=k−1,则有lenA=(x+y)k2+ylenA=(x+y)k_2+ylenA=(x+y)k2+y得证!!!