Angular 页面中moments时间的验证-- isSame()用法

本文介绍了在Angular中使用管道函数进行时间绑定的方法,并演示了如何利用isSame()方法进行前台筛选判断,确保时间格式正确匹配以提升用户体验。

1.angular中页面时间绑定,通常采用管道函数绑定

       <td style="width:10% !important">
                       {{record.time|date:'yyyy-MM-dd HH:mm'}}                         
       </td>

2.有时我们希望在前台做一些筛选判断,可以采用isSame()方法,例如如果年份是0001就显示为空

 <td style="width:10% !important">
     {{record.time.isSame('0001-12-31','year') ? ' ':record.time|date:'yyyy-MM-dd HH:mm'}}                       
  </td>

3.如果不生效的话,看下时间格式是DD-MM-YYYY还是YYYY-MM-DD,对应才可以

Reference:http://momentjs.com/docs/#/query/is-same/

length1=0.032; length2=0.084; length4=0.045; length5=0.035; L1=0.106; L2=0.048; bs2=0.042; cs4=0.03; m2=3000; m3=50000; m4=4500; JS2=12000000; JS4=25000000; omega1 = 12; alpha1 = 0; f(1)=length1*cos(theta1)-length2*cos(theta(1))-theta(4); f(2)=length1*sin(theta1)-length2*sin(theta(1)); f(3)=length4*cos(theta(2))+length5*cos(theta(3))-L1+theta(4); f(4)=length5*sin(theta(3))+length4*sin(theta(2))-L2; 这是代码的原始数据,matlab里的代码,所描述的是一个六杆机构,3构件是一个滑块,只有2,3,4有质量,只有2,4有惯性力矩,请按照如下格式写出该机构的力分析代码 %计算杆3、杆4质心处速度 Vs3x=lDS3 * omega3 .* sin(theta3); Vs3y=-lDS3 * omega3 .* sin(theta3); Vs4x=lDE * omega3 .* sin(theta3) + lES4 * omega4 .* sin(theta4); Vs4y=-lDE * omega3 .* cos(theta3) - lES4 * omega4 .* cos(theta4); % 计算杆3、杆4和滑块5质心处加速度 As3x = -lDS3 * omega3 .* omega3 .* cos(theta3)+lDS3*epsilon3.*sin(theta3); As3y = -lDE * omega3 .* omega3 .* sin(theta3)-lDS3*epsilon3.*cos(theta3); As4x = -lDE * omega3 .* omega3 .* cos(theta3) + lDE*epsilon3.*sin(theta3) - lES4 * omega4 .* omega4 .* cos(theta4) + lES4 * epsilon4.*sin(theta4); As4y = -lDE * omega3 .* omega3 .* sin(theta3) - lDE*epsilon3.*cos(theta3) - lES4 * omega4 .* omega4 .* sin(theta4) - lES4 * epsilon4.*sin(theta4); AFx =a5; AFy = 0; %计算杆3、杆4和滑块5质心处两个垂直方向惯性力 Fs3x = -m3 * As3x; Fs3y = -m3 * As3y; Fs4x = -m4 * As4x; Fs4y = -m4 * As4y; Fs5x = -m5 * AFx; 2 %计算感和杆4的惯性力矩 M3 = -JS3 * epsilon3; M4 = -JS4 * epsilon4; %计算杆3、杆4和滑块5所受重力 G3 = m3 * g; G4 = m4 * g; G5 = m5 * g; % 构建系数矩阵C和常数向量D for n1 = 1:361 %矩阵C C = zeros(14); C(1,1) = 1; C(1,4) = -1; C(2,2) = 1; C(2,5) = -1; C(3,3) = -1; C(3,4) = l1 * sin(theta1(n1)); C(3,5) = -l1 * cos(theta1(n1)); C(4,4) = 1; C(4,6) = -1; C(5,5) = 1; C(5,7) = -1; C(6,6) = l2 * sin(theta2(n1)); C(6,7) = -l2 * cos(theta2(n1)); C(7,6) = 1; C(7,8) = 1; C(7,10) = -1; C(8,7) = 1; C(8,9) = 1; C(8,11) = -1; C(9,6) = -l3 * sin(theta3(n1)); C(9,7) = l3 * cos(theta3(n1)); C(9,10) = lDE * abs(sin(theta3(n1))); C(9,11) = -lDE * abs(cos(theta3(n1))); C(10,10) = 1; C(10,12) = -1; C(11,11) = 1; C(11,13) = -1; C(12,12) = l4 * sin(theta4(n1)); C(12,13) = -l4 * cos(theta4(n1)); C(13,12) = 1; C(14,13) = 1; C(14,14) = 1; %矩阵D D = zeros(14, 1); 3 D(7) = -Fs3x(n1); D(8) = -Fs3y(n1); D(9) = -Fs3y(n1) * lDS3 * cos(theta3(n1)) + Fs3x(n1) * lDS3 * sin(theta3(n1)) + G3 * lDS3 * cos(theta3(n1)) - M3(n1); D(10) = -Fs4x(n1); D(11) = -Fs4y(n1); D(12) = Fs4x(n1) * lES4 * sin(theta4(n1)) - Fs4y(n1) * lES4 * cos(theta4(n1)) + G4 * lES4 * cos(theta4(n1)) - M4(n1); D(14) = G5; if (n1 <= 66 && n1 >= 346) D(13) = Pr - Fs5x(n1); elseif (66 < n1 && n1 < 346) D(13) = -Fs5x(n1); end FR = C \ D; Fr61x(n1) = FR(1); Fr61y(n1) = FR(2); M(n1) = FR(3); Fr12x(n1) = FR(4); Fr12y(n1) = FR(5); Fr23x(n1) = FR(6); Fr23y(n1) = FR(7); Fr63x(n1) = FR(8); Fr63y(n1) = FR(9); Fr34x(n1) = FR(10); Fr34y(n1) = FR(11); Fr45x(n1) = FR(12); Fr45y(n1) = FR(13); Fr65y(n1) = FR(14);
最新发布
07-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值