本人才疏学浅,内容难免有疏漏与不足,敬请您谅解与指正.
向量空间
1、概念
对于向量空间\(\mathbb{V}\)一组向量\({\boldsymbol \alpha}_{1}, {\boldsymbol \alpha}_{2}…{\boldsymbol \alpha}_{r}\):- 取自\(\mathbb{V}\);
- 线性无关;
- \(\mathbb{V}\)内任意向量a均可由其线性表出.
2、过渡矩阵
\({\boldsymbol \alpha}_{1}, {\boldsymbol \alpha}_{2}…{\boldsymbol \alpha}_{n}\), \({\boldsymbol \beta}_{1}, {\boldsymbol \beta}_{2}…{\boldsymbol \beta}_{n}\)分别为\(\mathbb{R}^n\)的两组基,且 \([{\boldsymbol \alpha}_{1}, {\boldsymbol \alpha}_{2}…{\boldsymbol \alpha}_{n}]\) \({\boldsymbol C}\) = \([{\boldsymbol \beta}_{1}, {\boldsymbol \beta}_{2}…{\boldsymbol \beta}_{n}]\). 则 \({\boldsymbol C}\)(可逆)为 \([{\boldsymbol \alpha}_{1}, {\boldsymbol \alpha}_{2}…{\boldsymbol \alpha}_{n}]\)到\([{\boldsymbol \beta}_{1}, {\boldsymbol \beta}_{2}…{\boldsymbol \beta}_{n}]\)过渡矩阵. 需要注意的是,这里面存在一个默认的坐标系(可以是A,B之一)来表示\({\boldsymbol \alpha}_{1}, {\boldsymbol \alpha}_{2}…{\boldsymbol \alpha}_{n}\), \({\boldsymbol \beta}_{1}, {\boldsymbol \beta}_{2}…{\boldsymbol \beta}_{n}\).
例子: \({\boldsymbol \alpha}_{1}=\)\(\begin{bmatrix}1\\0\\1\\\end{bmatrix}\), \({\boldsymbol \alpha}_{2}=\)\(\begin{bmatrix}1\\1\\-1\\\end{bmatrix}\), \({\boldsymbol \alpha}_{3}=\)\(\begin{bmatrix}1\\-1\\1\\\end{bmatrix}\), \({\boldsymbol \beta}_{1}=\)\(\begin{bmatrix}3\\0\\1\\\end{bmatrix}\), \({\boldsymbol \beta}_{2}=\)\(\begin{bmatrix}2\\0\\0\\\end{bmatrix}\), \({\boldsymbol \beta}_{3}=\)\(\begin{bmatrix}0\\2\\-2\\\end{bmatrix}\)是\(\mathbb{R}^3\)的两个基.
问:已知 \({\boldsymbol \xi}\)在\({\boldsymbol \beta}_{1}, {\boldsymbol \beta}_{2},{\boldsymbol \beta}_{3}\)下的坐标为\((1,2,0)\),求 \({\boldsymbol \xi}\)在\({\boldsymbol \alpha}_{1}, {\boldsymbol \alpha}_{2},{\boldsymbol \alpha}_{3}\)下的坐标.