#encoding=utf8
import os,json,nltk,re
from jpype import *
from tokenizer import cut_hanlp
huanhang=set(['。','?','!','?'])
keep_pos="q,qg,qt,qv,s,t,tg,g,gb,gbc,gc,gg,gm,gp,mg,Mg,n,an,ude1,nr,ns,nt,nz,nb,nba,nbc,nbp,nf,ng,nh,nhd,o,nz,nx,ntu,nts,nto,nth,ntch,ntcf,ntcb,ntc,nt,nsf,ns,nrj,nrf,nr2,nr1,nr,nnt,nnd,nn,nmc,nm,nl,nit,nis,nic,ni,nhm,nhd"
keep_pos_nouns=set(keep_pos.split(","))
keep_pos_v="v,vd,vg,vf,vl,vshi,vyou,vx,vi,vn"
keep_pos_v=set(keep_pos_v.split(","))
keep_pos_p=set(['p','pbei','pba'])
merge_pos=keep_pos_p|keep_pos_v
keep_flag=set([':',',','?','。','!',';','、','-','.','!',',',':',';','?','(',')','(',')','<','>','《','》'])
drop_pos_set=set(['xu','xx','y','yg','wh','wky','wkz','wp','ws','wyy','wyz','wb','u','ud','ude1','ude2','ude3','udeng','udh'])
def getNodes(parent,model_tagged_file): # 使用for循环遍历树
text=''
for node in parent:
if type(node) is nltk.Tree: # 如果是NP或者VP的合并分词
if node.label() == 'NP':
text+=''.join(node_child[0].strip() for node_child in node.leaves())+"/NP"+3*" "
if node.label() == 'VP':
text+=''.join(node_child[0].strip() for node_child in node.leaves())+"/VP"+3*" "
else: # 不是树的,就是叶子节点,我们直接表解词PP或者其他O
if node[1] in keep_pos_p:
text+=node[0].strip()+"/PP"+3*" "
if node[0] in huanhang :
text+=node[0].strip()+"/O"+3*" "
if node[1] not in merge_pos:
text+=node[0].strip()+"/O"+3*" "
#print("hh")
model_tagged_file.write(text+"\n")
def grammer(sentence,model_tagged_file):#{内/f 训/v 师/ng 单/b 柜/ng}
"""
input sentences shape like :[('工作', 'vn'), ('描述', 'v'), (':', 'w'), ('我', 'rr'), ('曾', 'd'), ('在', 'p')]
"""
# 定义名词块 “< >”:一个单元 “*”:匹配零次或多次 “+”:匹配一次或多次 “<ude1>?”: “的”出现零次或一次
grammar1 = r"""NP:
{<m|mg|Mg|mq|q|qg|qt|qv|s|>*<a|an|ag>*<s|g|gb|gbc|gc|gg|gm|gp|n|an|nr|ns|nt|nz|nb|nba|nbc|nbp|nf|ng|nh|nhd|o|nz|nx|ntu|nts|nto|nth|ntch|ntcf|ntcb|ntc|nt|nsf|ns|nrj|nrf|nr2|nr1|nr|nnt|nnd|nn|nmc|nm|nl|nit|nis|nic|ni|nhm|nhd>+<f>?<ude1>?<g|gb|gbc|gc|gg|gm|gp|n|an|nr|ns|nt|nz|nb|nba|nbc|nbp|nf|ng|nh|nhd|o|nz|nx|ntu|nts|nto|nth|ntch|ntcf|ntcb|ntc|nt|nsf|ns|nrj|nrf|nr2|nr1|nr|nnt|nnd|nn|nmc|nm|nl|nit|nis|nic|ni|nhm|nhd>+}
{<n|an|nr|ns|nt|nz|nb|nba|nbc|nbp|nf|ng|nh|nhd|nz|nx|ntu|nts|nto|nth|ntch|ntcf|ntcb|ntc|nt|nsf|ns|nrj|nrf|nr2|nr1|nr|nnt|nnd|nn|nmc|nm|nl|nit|nis|nic|ni|nhm|nhd>+<cc>+<n|an|nr|ns|nt|nz|nb|nba|nbc|nbp|nf|ng|nh|nhd|nz|nx|ntu|nts|nto|nth|ntch|ntcf|ntcb|ntc|nt|nsf|ns|nrj|nrf|nr2|nr1|nr|nnt|nnd|nn|nmc|nm|nl|nit|nis|nic|ni|nhm|nhd>+}
{<m|mg|Mg|mq|q|qg|qt|qv|s|>*<q|qg|qt|qv>*<f|b>*<vi|v|vn|vg|vd>+<ude1>+<n|an|nr|ns|nt|nz|nb|nba|nbc|nbp|nf|ng|nh|nhd|nz|nx|ntu|nts|nto|nth|ntch|ntcf|ntcb|ntc|nt|nsf|ns|nrj|nrf|nr2|nr1|nr|nnt|nnd|nn|nmc|nm|nl|nit|nis|nic|ni|nhm|nhd>+}
{<g|gb|gbc|gc|gg|gm|gp|n|an|nr|ns|nt|nz|nb|nba|nbc|nbp|nf|ng|nh|nhd|nz|nx|ntu|nts|nto|nth|ntch|ntcf|ntcb|ntc|nt|nsf|ns|nrj|nrf|nr2|nr1|nr|nnt|nnd|nn|nmc|nm|nl|nit|nis|nic|ni|nhm|nhd>+<vi>?}
VP:{<v|vd|vg|vf|vl|vshi|vyou|vx|vi|vn>+}
""" # 动词短语块
cp = nltk.RegexpParser(grammar1)
try :
result = cp.parse(sentence) # nltk的依存语法分析,输出是以grammer设置的名词块为单位的树
except:
pass
else:
getNodes(result,model_tagged_file) # 使用 getNodes 遍历树【这个是使用for循环,上一个是使用栈动态添加】
def data_read():
fout=open('nvp.txt','w',encoding='utf8')
for line in open('text.txt','r',encoding='utf8'):
line=line.strip()
grammer(cut_hanlp(line),fout) # 先进行hanlp进行分词,在使用grammer进行合并短语
fout.close()
if __name__=='__main__':
data_read()
tokenizer.py:
#encoding=utf8
import os,gc,re,sys
from itertools import chain
from jpype import *
djclass_path="-Djava.class.path="+"/home/kuo/NLP/module"+os.sep+"hanlp"+os.sep+"hanlp-1.6.2.jar:"+"/home/kuo/NLP/module"+os.sep+"hanlp"
startJVM(getDefaultJVMPath(), "-Djava.class.path=/home/lhq/桌面/NLP_basis/hanlp/hanlp-1.7.3.jar:/home/lhq/桌面/NLP_basis/hanlp",
"-Xms1g",
"-Xmx1g")
Tokenizer = JClass('com.hankcs.hanlp.tokenizer.StandardTokenizer')
def to_string(sentence,return_generator=False):
if return_generator:
return (word_pos_item.toString().split('/') for word_pos_item in Tokenizer.segment(sentence))
else:
return [(word_pos_item.toString().split('/')[0],word_pos_item.toString().split('/')[1]) for word_pos_item in Tokenizer.segment(sentence)]
def to_string_hanlp(sentence,return_generator=False):
if return_generator:
return (word_pos_item.toString().split('/') for word_pos_item in HanLP.segment(sentence))
else:
return [(word_pos_item.toString().split('/')[0],word_pos_item.toString().split('/')[1]) for word_pos_item in Tokenizer.segment(sentence)]
def seg_sentences(sentence,with_filter=True,return_generator=False):
segs=to_string(sentence,return_generator=return_generator)
if with_filter:
g = [word_pos_pair[0] for word_pos_pair in segs if len(word_pos_pair)==2 and word_pos_pair[0]!=' ' and word_pos_pair[1] not in drop_pos_set]
else:
g = [word_pos_pair[0] for word_pos_pair in segs if len(word_pos_pair)==2 and word_pos_pair[0]!=' ']
return iter(g) if return_generator else g
def cut_hanlp(raw_sentence,return_list=True):
if len(raw_sentence.strip())>0:
return to_string(raw_sentence) if return_list else iter(to_string(raw_sentence))