【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM

本文解析了一系列关于机器学习的测验题目,涵盖了垂直线的概念、欠拟合的解决策略、SVM参数调整的重要性以及高斯核函数的应用条件,旨在帮助读者深入理解机器学习的核心概念。

【1】

【2】

Answer: B。 即 x1=3这条垂直线。

【3】

 

Answer: B

因为要尽可能小。对B,右侧红叉,有1/2 * 2  = 1 ≥ 1,左侧圆圈,有1/2 * -2  = -1 ≤ -1。

A太小不满足不等式

【4】

参考课件:


 测验

Answer:B。

 

Answer: B

Answer:CD

 

Answer: ABG

欠拟合。

A 正确。增加feature、增加多项式feature

B 正确。神经网络增加hidden units

C 错误。逻辑回归成本函数是凸的,因此梯度下降总是会找到全局最小值。

D 错误。

E 错误。

F 错误。已经欠拟合了,应该减小

G 正确。

 

          

Answer: ADE

A 正确。使用高斯核做相似性度量,要求数据处于大致相同的范围内。

B 错误。线性可分的数据集通常可以由许多不同的线分隔。 改变参数C将导致SVM的决策边界在这些可能性之间变化。 例如,对于非常大的C值,它可以学习更大的θ值以增加某些示例的余量。

C 错误。K个分类器

D 正确。范围为0-1,参考课件

E 正确

F 错误

 

转载于:https://www.cnblogs.com/maxiaodoubao/p/10153163.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值