[实战Google深度学习框架]Tensorflow(4)图像识别与卷积神经网络

本文深入探讨了卷积神经网络(CNN)的基本概念、经典模型如LeNet-5与Inception-v3,以及如何利用迁移学习提升图像识别性能。通过实战代码演示,详细解析了CNN的每一层操作,包括卷积层、池化层、全连接层等,并展示了如何在TensorFlow框架下构建CNN模型。此外,还介绍了如何使用预训练的Inception-v3模型进行迁移学习,以提高特定任务的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇blog主要以code+markdown的形式介绍tf这本实战书。(建议使用jupyter来学习)
 

第六章 图像识别与卷积神经网络

  • 6.1 图像识别问题简介及经典数据集

  • 6.2 卷积神经网络简介

  • 6.3 卷积神经网络常用网络

  • 6.4 经典卷积神经网络

  • 6.5 卷积神经网络迁移学习

6.1 图像识别问题简介及经典数据集

MNIST-简单的手写体识别   

CIFAR(Alex Krizhevsky, Geoffrey Hinton) 

ImageNet(Feifei Li) - WordNet (ILSVRC)  

 

6.2 卷积神经网络简介

全连接神经网络、卷积神经网络、循环神经网络

  • 卷积神经网络

1.  输入层(input layer)

RGB(channel):n x n x 3

2. 卷积层(convolution layer)

Size: 3 x 3 or 5 x 5

3. 池化层(Pooling)

缩小矩阵大小,减少整个神经网络参数数量

4. 全连接层(full connect layer)

由1到2个全连接层给出最后分类结果

5. Softmax层

根据样例比例计算不同种类的概率分布

 

6.3 卷积神经网络常用网络

6.3.1 卷积层(filter/kernel)

常用的尺寸是3x3或5x5

a_{x,y,z}:过滤器中节点(x,y,z)的取值

w^{i}_{x,y,z}:表示对于输出单位节点矩阵中的第i个节点

b^i:表示第i个输出节点的偏置项参数

则单位矩阵中第i个节点g(i)为:

                                     g(i)=f(\sum_{x=1}^{2}\sum_{y=1}^{2}\sum_{z=1}^{3}a_{x,y,z} \times w^i_{x,y,z}+b^i)

  • zero-padding 全0填充

                                      out_{length}=[in_{length}/stride_{length}]

                                      out_{width}=[in_{width}/stride_{width}]

  • 设置步长stride

                                      out_{length}=[(in_{length}-filter_{length}+1)/stride_{length}]

                                      out_{width}=[(in_{width}-filter_{width}+1)/stride_{width}]

# 6.3 卷积神经网络
# 前向传播
import tensorflow as tf
import numpy as np

M = np.array([
        [[1],[-1],[0]],
        [[-1],[2],[1]],
        [[0],[2],[-2]]
    ])

# 声明4维矩阵,前两维代表过滤器尺寸,第三维表示当前层的深度,第四个是过滤器的深度
filter_weight = tf.get_variable('weights', [2, 2, 1, 1], 
                                initializer = tf.constant_initializer([[1, -1],[0, 2]]))
# 过滤器的深度为16,也是下一层神经网络节点的深度
biases = tf.get_variable('biases', [1], initializer = tf.constant_initializer(1))

M = np.asarray(M, dtype='float32')
M = M.reshape(1, 3, 3, 1)

# tf.nn.conv2d 
# 参数1表示输入的当前层节点矩阵, 共四维矩阵,后三维对应一个节点矩阵,第一维是batch,
# 参数2是权重,参数3是步长(长度为4的数组)
# 参数4是填充padding,有same(全0)和valid(不添加)两种
x = tf.placeholder('float32', [1, None, None, 1])
conv = tf.nn.conv2d(x, filter_weight, strides=[1, 2, 2, 1], padding="SAME")

bias = tf.nn.bias_add(conv, biases)
actived_conv = tf.nn.relu(bias)

# 池化层12
# ksize过滤器尺寸,strides步长
pool = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    convoluted_M = sess.run(bias,feed_dict={x:M})
    pooled_M = sess.run(pool,feed_dict={x:M})
    
    print("convoluted_M: \n", convoluted_M)
    print("pooled_M: \n", pooled_M)


6.4 经典卷积网络模型

6.4.1 LeNet-5模型

Yann Lecun 1998

  • 第一层:卷积层

       输入层大小为32 x 32 x 1,第一个卷积层过滤器尺寸为5 x 5,深度为6,不使用全0填充,步长为1。这一层输出为32-5+1=28,深度为6.一共有5x5x1x6+6=156个参数,其中6个为偏置项参数。下一层的节点矩阵有28x28x6=4704个节点,每个节点与5x5=25个当前层节点相连,本层的卷积一共有4704x(25+1)=122304个连接。

    # 声明第一层的变量权重和偏置项,输入28x28x1的原始MNIST图片像素,全0填充
    # 输出为28x28x32
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable(
            "weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
        
        # 使用边长为5,深度为32的过滤器,移动步长为1,全0填充
        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
  • 第二层:池化层

      输入为第一层的输出28 x 28 x 6的节点矩阵。过滤器尺寸为2 x 2,长和宽步长均为2,本层输出矩阵为14x14x6。

# 实现第二层池化层,最大池化,过滤器边长为2
    # 全0填充,步长为2,输入为上一层输出28x28x32
    # 输出14x14x32
    with tf.name_scope("layer2-pool1"):
        pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")
  • 第三层:卷积层

        输入的矩阵大小为14 x 14 x 6,过滤器尺寸为5 x 5,深度为16.不使用全0填充,步长为1。输出矩阵大小为10x10x16。

    # 声明第三层卷积,输入为14x14x32
    # 输出为14x14x64
    with tf.variable_scope("layer3-conv2"):
        conv2_weights = tf.get_variable(
            "weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
        
        # 使用边长为5,深度为64的过滤器,步长为1,全0填充
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
  • 第四层:池化层:

        输入矩阵为10 x 10 x 16,过滤器大小为2 x 2,步长为2。

    # 实现第四层池化,输入为14x14x64
    # 输出为7x7x64
    with tf.name_scope("layer4-pool2"):
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
       
        # 转化为第五层的全连接输出格式“拉直成向量”
        pool_shape = pool2.get_shape().as_list()
        # 拉直后的长度pool_shape[0]
        nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
        # 将第四层的输出变成一个batch的向量
        reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
  • 第五层:全连接层:

       输入矩阵大小为5 x 5 x 16.。看作是一个向量。

    # FC,长度为3136,输出512.引入了dropout,避免过拟合,dropout一般用在全连接层
    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 加入正则化
        if(regularizer != None): tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if(train): fc1 = tf.nn.dropout(fc1, 0.5)
  • 第六层:全连接层:

       输入节点为120个,输出节点为84个。

    # FC,长度为3136,输出512.引入了dropout,避免过拟合,dropout一般用在全连接层
    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 加入正则化
        if(regularizer != None): tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if(train): fc1 = tf.nn.dropout(fc1, 0.5)
  • 第七层:全连接层

       输入84个,输出10个。

    # 输入512向量,输出10,然后通过softmax得到分类结果
    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if(regularizer != None): tf.add_to_collection('losses', regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc1, fc2_weights) + fc2_biases

完整代码

  • 前向传播
# LeNet-5
# 网络

import tensorflow as tf
# 配置参数
INPUT_NODE = 784
OUTPUT_NODE = 10

IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10

# 第一层卷积层尺寸和深度
CONV1_DEEP = 32
CONV1_SIZE = 5
# 第二层卷积层尺寸和深度
CONV2_DEEP = 64
CONV2_SIZE = 5
# 全连接的节点个数
FC_SIZE = 512

# 前向传播,使用了dropout
def inference(input_tensor, train, regularizer):
    # 声明第一层的变量权重和偏置项,输入28x28x1的原始MNIST图片像素,全0填充
    # 输出为28x28x32
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable(
            "weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
        
        # 使用边长为5,深度为32的过滤器,移动步长为1,全0填充
        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
    
    # 实现第二层池化层,最大池化,过滤器边长为2
    # 全0填充,步长为2,输入为上一层输出28x28x32
    # 输出14x14x32
    with tf.name_scope("layer2-pool1"):
        pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")

    # 声明第三层卷积,输入为14x14x32
    # 输出为14x14x64
    with tf.variable_scope("layer3-conv2"):
        conv2_weights = tf.get_variable(
            "weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
        
        # 使用边长为5,深度为64的过滤器,步长为1,全0填充
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))

    # 实现第四层池化,输入为14x14x64
    # 输出为7x7x64
    with tf.name_scope("layer4-pool2"):
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
       
        # 转化为第五层的全连接输出格式“拉直成向量”
        pool_shape = pool2.get_shape().as_list()
        # 拉直后的长度pool_shape[0]
        nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
        # 将第四层的输出变成一个batch的向量
        reshaped = tf.reshape(pool2, [pool_shape[0], nodes])

    # FC,长度为3136,输出512.引入了dropout,避免过拟合,dropout一般用在全连接层
    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 加入正则化
        if(regularizer != None): tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if(train): fc1 = tf.nn.dropout(fc1, 0.5)
    
    # 输入512向量,输出10,然后通过softmax得到分类结果
    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if(regularizer != None): tf.add_to_collection('losses', regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc1, fc2_weights) + fc2_biases

    return logit
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import numpy as np

BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99

def train(mnist):
    # 定义输出为4维矩阵的placeholder
    x = tf.placeholder(tf.float32, [
            BATCH_SIZE,
            IMAGE_SIZE,
            IMAGE_SIZE,
            NUM_CHANNELS],
        name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
    
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    y = inference(x,False,regularizer)
    global_step = tf.Variable(0, trainable=False)

    # 定义损失函数、学习率、滑动平均操作以及训练过程。
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
        staircase=True)

    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variables_averages_op]):
        train_op = tf.no_op(name='train')
        
    # 初始化TensorFlow持久化类。
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)

            reshaped_xs = np.reshape(xs, (
                BATCH_SIZE,
                IMAGE_SIZE,
                IMAGE_SIZE,
                NUM_CHANNELS))
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})

            if i % 1000 == 0:
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
def main(argv=None):
    mnist = input_data.read_data_sets("../../datasets/MNIST_data", one_hot=True)
    train(mnist)

if __name__ == '__main__':
    main()

 

6.4.2 Inception-v3模型

import tensorflow as tf

slim = tf.contrib.slim

#设置函数的参数默认取值,这里将这三个函数的stride和padding参数设定好默认值,以后就不需要设置了
#若以后重新设置,则以最新值代替
with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='SAME'):
    net = 'net'

    with tf.variable_scope('Mixed_7c'):
        with tf.variable_scope('Branch_0'):
            #第一个参数是输入的网络,第二个是卷积核数量,第三个是卷积核大小
            branch_0 = slim.conv2d(net,320,[1,1],scope='conv_1a')

        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net,384,[1,1],scope='conv_1a')
            #将多个网络合并,第一个参数是合并的维度,[batch,width,length,depth],3代表合并的维度是深度
            branch_1 = tf.concat(3,[
                slim.conv2d(branch_1,384,[1,3],scope='conv_2a'),
                slim.conv2d(branch_1,384,[3,1],scope='conv_2b')
            ])

        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net,448,[1,1],scope='conv_1a')
            branch_2 = slim.conv2d(branch_2,384,[3,3],scope='conv_2a')
            branch_2 = tf.concat(3,[
                slim.conv2d(branch_2,384,[1,3],scope='conv_3a'),
                slim.conv2d(branch_2,384,[3,1],scope='conv_3b')
            ])

        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net,[3,3],scope='avg_pool_1a')
            branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv_2a')

        net = tf.concat(3,[branch_0,branch_1,branch_2,branch_3])

 

6.5 卷积迁移学习

6.5.1 迁移学习介绍

ILSVRC: AlexNet, ZF Net, GoogLeNet, ResNet

6.5.2 TensorFlow迁移学习

  • 设置各种路径和参数
import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile

BOTTLENECK_TENSOR_SIZE = 2048
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'


MODEL_DIR = '../../datasets/inception_dec_2015'
MODEL_FILE= 'tensorflow_inception_graph.pb'

CACHE_DIR = '../../datasets/bottleneck'
INPUT_DATA = '../../datasets/flower_photos'

VALIDATION_PERCENTAGE = 10
TEST_PERCENTAGE = 10

LEARNING_RATE = 0.01
STEPS = 4000
BATCH = 100
  • 把样本中所有的图片列表并按训练、验证、测试数据分开
def create_image_lists(testing_percentage, validation_percentage):

    result = {}
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    is_root_dir = True
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue

        extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']

        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
            file_list.extend(glob.glob(file_glob))
        if not file_list: continue

        label_name = dir_name.lower()
        
        # 初始化
        training_images = []
        testing_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)
            
            # 随机划分数据
            chance = np.random.randint(100)
            if chance < validation_percentage:
                validation_images.append(base_name)
            elif chance < (testing_percentage + validation_percentage):
                testing_images.append(base_name)
            else:
                training_images.append(base_name)

        result[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'testing': testing_images,
            'validation': validation_images,
            }
    return result
  • 定义函数通过类别名称、所属数据集和图片编号获取一张图片的地址。
def get_image_path(image_lists, image_dir, label_name, index, category):
    label_lists = image_lists[label_name]
    category_list = label_lists[category]
    mod_index = index % len(category_list)
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path
  • 定义函数获取Inception-v3模型处理之后的特征向量的文件地址。
def get_bottleneck_path(image_lists, label_name, index, category):
    return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt'
  • 定义函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):

    bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})

    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values
  • 定义函数会先试图寻找已经计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件。
def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
    label_lists = image_lists[label_name]
    sub_dir = label_lists['dir']
    sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
    if not os.path.exists(sub_dir_path): os.makedirs(sub_dir_path)
    bottleneck_path = get_bottleneck_path(image_lists, label_name, index, category)
    if not os.path.exists(bottleneck_path):

        image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)

        image_data = gfile.FastGFile(image_path, 'rb').read()

        bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)

        bottleneck_string = ','.join(str(x) for x in bottleneck_values)
        with open(bottleneck_path, 'w') as bottleneck_file:
            bottleneck_file.write(bottleneck_string)
    else:

        with open(bottleneck_path, 'r') as bottleneck_file:
            bottleneck_string = bottleneck_file.read()
        bottleneck_values = [float(x) for x in bottleneck_string.split(',')]

    return bottleneck_values
  • 这个函数随机获取一个batch的图片作为训练数据。
def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    for _ in range(how_many):
        label_index = random.randrange(n_classes)
        label_name = list(image_lists.keys())[label_index]
        image_index = random.randrange(65536)
        bottleneck = get_or_create_bottleneck(
            sess, image_lists, label_name, image_index, category, jpeg_data_tensor, bottleneck_tensor)
        ground_truth = np.zeros(n_classes, dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)

    return bottlenecks, ground_truths
  • 这个函数获取全部的测试数据,并计算正确率。
def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    label_name_list = list(image_lists.keys())
    for label_index, label_name in enumerate(label_name_list):
        category = 'testing'
        for index, unused_base_name in enumerate(image_lists[label_name][category]):
            bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype=np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
    return bottlenecks, ground_truths
  • 定义主函数。
def main():
    image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
    n_classes = len(image_lists.keys())
    
    # 读取已经训练好的Inception-v3模型。
    with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(
        graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])

    # 定义新的神经网络输入
    bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
    ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
    
    # 定义一层全链接层
    with tf.name_scope('final_training_ops'):
        weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
        biases = tf.Variable(tf.zeros([n_classes]))
        logits = tf.matmul(bottleneck_input, weights) + biases
        final_tensor = tf.nn.softmax(logits)
        
    # 定义交叉熵损失函数。
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
    
    # 计算正确率。
    with tf.name_scope('evaluation'):
        correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
        evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        # 训练过程。
        for i in range(STEPS):
 
            train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
                sess, n_classes, image_lists, BATCH, 'training', jpeg_data_tensor, bottleneck_tensor)
            sess.run(train_step, feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})

            if i % 100 == 0 or i + 1 == STEPS:
                validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
                    sess, n_classes, image_lists, BATCH, 'validation', jpeg_data_tensor, bottleneck_tensor)
                validation_accuracy = sess.run(evaluation_step, feed_dict={
                    bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth})
                print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%' %
                    (i, BATCH, validation_accuracy * 100))
            
        # 在最后的测试数据上测试正确率。
        test_bottlenecks, test_ground_truth = get_test_bottlenecks(
            sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor)
        test_accuracy = sess.run(evaluation_step, feed_dict={
            bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth})
        print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

if __name__ == '__main__':
    main()

运行结果

Step 0: Validation accuracy on random sampled 100 examples = 47.0%

Step 100: Validation accuracy on random sampled 100 examples = 83.0%

Step 200: Validation accuracy on random sampled 100 examples = 88.0%

Step 300: Validation accuracy on random sampled 100 examples = 86.0%

Step 400: Validation accuracy on random sampled 100 examples = 89.0%

Step 500: Validation accuracy on random sampled 100 examples = 84.0%

Step 600: Validation accuracy on random sampled 100 examples = 91.0%

Step 700: Validation accuracy on random sampled 100 examples = 90.0%

Step 800: Validation accuracy on random sampled 100 examples = 92.0%

Step 900: Validation accuracy on random sampled 100 examples = 84.0%

Step 1000: Validation accuracy on random sampled 100 examples = 88.0%

Step 1100: Validation accuracy on random sampled 100 examples = 92.0%

Step 1200: Validation accuracy on random sampled 100 examples = 90.0%

Step 1300: Validation accuracy on random sampled 100 examples = 86.0%

Step 1400: Validation accuracy on random sampled 100 examples = 91.0%

Step 1500: Validation accuracy on random sampled 100 examples = 90.0%

Step 1600: Validation accuracy on random sampled 100 examples = 89.0%

Step 1700: Validation accuracy on random sampled 100 examples = 92.0%

Step 1800: Validation accuracy on random sampled 100 examples = 96.0%

Step 1900: Validation accuracy on random sampled 100 examples = 91.0%

Step 2000: Validation accuracy on random sampled 100 examples = 85.0%

Step 2100: Validation accuracy on random sampled 100 examples = 87.0%

Step 2200: Validation accuracy on random sampled 100 examples = 92.0%

Step 2300: Validation accuracy on random sampled 100 examples = 93.0%

Step 2400: Validation accuracy on random sampled 100 examples = 91.0%

Step 2500: Validation accuracy on random sampled 100 examples = 94.0%

Step 2600: Validation accuracy on random sampled 100 examples = 90.0%

Step 2700: Validation accuracy on random sampled 100 examples = 94.0%

Step 2800: Validation accuracy on random sampled 100 examples = 90.0%

Step 2900: Validation accuracy on random sampled 100 examples = 88.0%

Step 3000: Validation accuracy on random sampled 100 examples = 95.0%

Step 3100: Validation accuracy on random sampled 100 examples = 94.0%

Step 3200: Validation accuracy on random sampled 100 examples = 91.0%

Step 3300: Validation accuracy on random sampled 100 examples = 98.0%

Step 3400: Validation accuracy on random sampled 100 examples = 96.0%

Step 3500: Validation accuracy on random sampled 100 examples = 88.0%

Step 3600: Validation accuracy on random sampled 100 examples = 90.0%

Step 3700: Validation accuracy on random sampled 100 examples = 96.0%

Step 3800: Validation accuracy on random sampled 100 examples = 92.0%

Step 3900: Validation accuracy on random sampled 100 examples = 93.0%

Step 3999: Validation accuracy on random sampled 100 examples = 90.0%

Final test accuracy = 92.2%

 

 

 

完整代码

import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile

BOTTLENECK_TENSOR_SIZE = 2048
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'


MODEL_DIR = '../../datasets/inception_dec_2015'
MODEL_FILE= 'tensorflow_inception_graph.pb'

CACHE_DIR = '../../datasets/bottleneck'
INPUT_DATA = '../../datasets/flower_photos'

VALIDATION_PERCENTAGE = 10
TEST_PERCENTAGE = 10

LEARNING_RATE = 0.01
STEPS = 4000
BATCH = 100

def create_image_lists(testing_percentage, validation_percentage):

    result = {}
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    is_root_dir = True
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue

        extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']

        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
            file_list.extend(glob.glob(file_glob))
        if not file_list: continue

        label_name = dir_name.lower()
        
        # 初始化
        training_images = []
        testing_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)
            
            # 随机划分数据
            chance = np.random.randint(100)
            if chance < validation_percentage:
                validation_images.append(base_name)
            elif chance < (testing_percentage + validation_percentage):
                testing_images.append(base_name)
            else:
                training_images.append(base_name)

        result[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'testing': testing_images,
            'validation': validation_images,
            }
    return result

def get_image_path(image_lists, image_dir, label_name, index, category):
    label_lists = image_lists[label_name]
    category_list = label_lists[category]
    mod_index = index % len(category_list)
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path

def get_bottleneck_path(image_lists, label_name, index, category):
    return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt'

def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):

    bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})

    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values

def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
    label_lists = image_lists[label_name]
    sub_dir = label_lists['dir']
    sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
    if not os.path.exists(sub_dir_path): os.makedirs(sub_dir_path)
    bottleneck_path = get_bottleneck_path(image_lists, label_name, index, category)
    if not os.path.exists(bottleneck_path):

        image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)

        image_data = gfile.FastGFile(image_path, 'rb').read()

        bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)

        bottleneck_string = ','.join(str(x) for x in bottleneck_values)
        with open(bottleneck_path, 'w') as bottleneck_file:
            bottleneck_file.write(bottleneck_string)
    else:

        with open(bottleneck_path, 'r') as bottleneck_file:
            bottleneck_string = bottleneck_file.read()
        bottleneck_values = [float(x) for x in bottleneck_string.split(',')]

    return bottleneck_values



def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    for _ in range(how_many):
        label_index = random.randrange(n_classes)
        label_name = list(image_lists.keys())[label_index]
        image_index = random.randrange(65536)
        bottleneck = get_or_create_bottleneck(
            sess, image_lists, label_name, image_index, category, jpeg_data_tensor, bottleneck_tensor)
        ground_truth = np.zeros(n_classes, dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)

    return bottlenecks, ground_truths

def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    label_name_list = list(image_lists.keys())
    for label_index, label_name in enumerate(label_name_list):
        category = 'testing'
        for index, unused_base_name in enumerate(image_lists[label_name][category]):
            bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype=np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
    return bottlenecks, ground_truths

def main():
    image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
    n_classes = len(image_lists.keys())
    
    # 读取已经训练好的Inception-v3模型。
    with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(
        graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])

    # 定义新的神经网络输入
    bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
    ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
    
    # 定义一层全链接层
    with tf.name_scope('final_training_ops'):
        weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
        biases = tf.Variable(tf.zeros([n_classes]))
        logits = tf.matmul(bottleneck_input, weights) + biases
        final_tensor = tf.nn.softmax(logits)
        
    # 定义交叉熵损失函数。
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
    
    # 计算正确率。
    with tf.name_scope('evaluation'):
        correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
        evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        # 训练过程。
        for i in range(STEPS):
 
            train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
                sess, n_classes, image_lists, BATCH, 'training', jpeg_data_tensor, bottleneck_tensor)
            sess.run(train_step, feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})

            if i % 100 == 0 or i + 1 == STEPS:
                validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
                    sess, n_classes, image_lists, BATCH, 'validation', jpeg_data_tensor, bottleneck_tensor)
                validation_accuracy = sess.run(evaluation_step, feed_dict={
                    bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth})
                print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%' %
                    (i, BATCH, validation_accuracy * 100))
            
        # 在最后的测试数据上测试正确率。
        test_bottlenecks, test_ground_truth = get_test_bottlenecks(
            sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor)
        test_accuracy = sess.run(evaluation_step, feed_dict={
            bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth})
        print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

if __name__ == '__main__':
    main()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值