linear regression(3)-Gradient Descent in Practice I/II(Feature Scalling/Learning Rate)

本文介绍了如何通过特征缩放加速梯度下降算法的收敛,并探讨了选择合适的学习率的重要性。此外,还讨论了如何简化假设函数,通过组合多个特征创建更高阶的多项式回归模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gradient Descent in Practice I - Feature Scaling


goal:speed up gradient descent by having each of our input values in roughly the same range

xi:=(xi−μi)/si

Where μi is the average of all the values for feature (i) and si is the range of values (max - min), or si is the standard deviation.

Gradient Descent in Practice II - Learning Rate


goal:find the fit learning rate to make the J(θ) will decrease on every iteration.

summary:

If α is too small: slow convergence.

If α is too large: may not decrease onevery iteration and thus may not converge.

Polynomial Regression

goal:simplify our hypothesis function

combine multiple features into one

For example, if our hypothesis function is hθ(x)=θ0+θ1x1

then we can create additional features based on x1, to get the quadratic function hθ(x)=θ0+θ1x1+θ2x12

or the cubic function hθ(x)=θ0+θ1x1+θ2x12+θ3x13

In the cubic version, we have created new features x2 and x3 where x2=x12 and x3=x13.

To make it a square root function, we could do: hθ(x)=θ0+θ1x1+θ2x1

One important thing to keep in mind is, if you choose your features this way then feature scaling becomes very important.




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值