Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m,n;
m=obstacleGrid.size();
n=obstacleGrid[0].size();
vector<vector<int>> nums;
nums.resize(m);
for(int i=0;i<m;i++)
nums[i].resize(n);
for(int i=0;i<m;i++)
{
if(obstacleGrid[i][0]==1)
{
nums[i][0]=0;
for(int j=i;j<m;j++)
nums[j][0]=0;
break;
}
else
nums[i][0]=1;
}
for(int i=0;i<n;i++)
{
if(obstacleGrid[0][i]==1)
{
nums[0][i]=0;
for(int j=i;j<n;j++)
nums[0][j]=0;
break;
}
else
nums[0][i]=1;
}
if((m-1)>0&&(n-1)>0)
{
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
if(obstacleGrid[i][j]==1)
nums[i][j]=0;
else
nums[i][j]=nums[i][j-1]+nums[i-1][j];
}
}
}
return nums[m-1][n-1];
}
};