二叉树-相关方法(Java实现)

本文详细介绍了二叉树的各种操作,包括如何判断一棵二叉树是否为完全二叉树、不同方式的遍历方法(如前序、中序、后序遍历的递归与非递归实现)、层级遍历等,并提供了获取二叉树节点数、叶子节点数及第k层节点数的具体算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、判断完全二叉树

2、遍历

1)前序遍历

递归

 非递归

2)中序遍历

递归

非递归

3)后序遍历

递归

非递归

3、层级遍历

4、获取二叉树节点数

5、获取叶子节点数

6、获取第k层的节点数


树节点 

package com.mzp.tree;

/**
 * 平衡二叉树节点
 */
public class AVLTreeNode {
    private int data;
    //高度
    private int height;
    //左子节点
    private AVLTreeNode left;
    //右子节点
    private AVLTreeNode right;

    public AVLTreeNode(int data) {
        this.data = data;
        this.height = 1;
    }

    public int getData() {
        return data;
    }

    public void setData(int data) {
        this.data = data;
    }

    public int getHeight() {
        return height;
    }

    public void setHeight(int height) {
        this.height = height;
    }

    public AVLTreeNode getLeft() {
        return left;
    }

    public void setLeft(AVLTreeNode left) {
        this.left = left;
    }

    public AVLTreeNode getRight() {
        return right;
    }

    public void setRight(AVLTreeNode right) {
        this.right = right;
    }
}

1、判断完全二叉树

    public static void main(String[] args) {
        AVLTreeNode root = new AVLTreeNode(1);
        AVLTreeNode left = new AVLTreeNode(2);
        AVLTreeNode right = new AVLTreeNode(3);
       root.setLeft(left);
        root.setRight(right);
        System.out.println(isBinaryTreeComplete(root));
    }
/**
     * 判断二叉树是否是完全二叉树
     * @param root
     * @return true表示该树是完全二叉树
     */
    public static boolean isBinaryTreeComplete(AVLTreeNode root){
        Queue<AVLTreeNode> queue = new LinkedList<>();
        if(root != null){
            queue.add(root);
        }else{
            return true;
        }
        while (!queue.isEmpty()){
            AVLTreeNode poll = queue.poll();
            if(poll == null){
                break;
            }
            queue.add(poll.getLeft());
            queue.add(poll.getRight());
        }
        while (!queue.isEmpty()){
            AVLTreeNode poll = queue.poll();
            if(poll != null){
                return false;
            }
        }
        return true;
    }

2、遍历

1)前序遍历

递归

//递归遍历 前序
    public void preTraversal(AVLTreeNode node){
        if(node == null){
            return;
        }else{
            System.out.print(node.getData() + " ");
            preTraversal(node.getLeft());
            preTraversal(node.getRight());
        }
    }

 非递归

/*
     * 非递归前序遍历
     */
    public void preTrasersal () {
        if (root != null) {
            Stack<AVLTreeNode> stack = new Stack<AVLTreeNode>();

            AVLTreeNode current = root;
            stack.add(current);
            while (!stack.isEmpty()) {
                current = stack.pop();
                System.out.print(current.getData()+ " ");

                if (current.getRight() != null) {
                    stack.add(current.getRight());
                }

                if (current.getLeft() != null) {
                    stack.add(current.getLeft());
                }
            }
        }
    }

2)中序遍历

递归

//递归遍历 中序
    public void inTraversal(AVLTreeNode node){
        if(node == null){
            return;
        }else{
            inTraversal(node.getLeft());
            System.out.print(node.getData() + " ");
            inTraversal(node.getRight());
        }
    }

非递归

/*
     * 非递归中序遍历
     */
    public void inTrasersal () {
        if (root != null) {
            Stack<AVLTreeNode> stack = new Stack<AVLTreeNode>();
            AVLTreeNode current = root;

            while (current != null) {
                stack.add(current);
                current = current.getLeft();
            }

            while (!stack.isEmpty()) {
                current = stack.pop();
                System.out.print(current.getData() + " ");

                current = current.getRight();

                while (current != null) {
                    stack.add(current);
                    current = current.getLeft();
                }
            }
        }
    }

3)后序遍历

递归

//递归遍历 后序
    public void postTraversal(AVLTreeNode node){
        if(node == null){
            return;
        }else{
            postTraversal(node.getLeft());
            postTraversal(node.getRight());
            System.out.print(node.getData() + " ");
        }
    }

非递归

/*
     * 非递归后序遍历
     */
    public void postTraversal () {
        if (root != null) {
            Stack<AVLTreeNode> stack = new Stack<AVLTreeNode>();

            AVLTreeNode current = root;
            AVLTreeNode preNode = null;

            while (current != null) {
                stack.add(current);
                current = current.getLeft();
            }

            while (!stack.isEmpty()) {
                current = stack.pop();

                if (current.getRight() == null || current.getRight() == preNode) {
                    System.out.print(current.getData() + " ");
                    preNode = current;
                } else {
                    stack.add(current);

                    current = current.getRight();
                    while (current != null) {
                        stack.add(current);
                        current = current.getLeft();
                    }
                }
            }
        }
    }

3、层级遍历

//层级遍历
    public void levelTraversal(AVLTreeNode root){
        Queue<AVLTreeNode> queue = new LinkedList<>();
        if(root != null){
            queue.offer(root);
            while(!queue.isEmpty()){
                AVLTreeNode node = queue.poll();
                System.out.print(node.getData() + " ");
                AVLTreeNode left = node.getLeft();
                if(left != null){
                    queue.offer(left);
                }
                AVLTreeNode right = node.getRight();
                if(right != null){
                    queue.offer(right);
                }
            }
        }
    }

4、获取二叉树节点数

/**
     * 获取二叉树节点数
     * @param root
     * @return
     */
    public static int binaryTreeNodeSize(AVLTreeNode root){
        if(root == null){
            return 0;
        }
        return binaryTreeNodeSize(root.getLeft()) + binaryTreeNodeSize(root.getRight()) + 1;
    }

5、获取叶子节点数

public static int binaryTreeLeafSize(AVLTreeNode root){
        if(root == null){
            return 0;
        }
        if(root.getLeft() == null && root.getRight() == null){
            return 1;
        }
        return binaryTreeLeafSize(root.getLeft()) + binaryTreeLeafSize(root.getRight());
    }

6、获取第k层的节点数

/**
     * 获取第k层的节点数
     * @param root
     * @param k
     * @return
     */
    public static int nodeSizeLeaveK(AVLTreeNode root, int k){
        if(root == null){
            return 0;
        }
        if(k == 1){
            return 1;
        }
        return nodeSizeLeaveK(root.getLeft(), k -1) + nodeSizeLeaveK(root.getRight(), k - 1);
    }

参考地址:

数据结构--二叉树--详解_清欢有道的博客-优快云博客_二叉树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值