1122. Hamiltonian Cycle

本文探讨了图论中的汉密尔顿回路问题,即寻找一条简单回路,包含图中每一个顶点恰好一次。文章详细描述了一个判断给定路径是否构成汉密尔顿回路的算法实现,并提供了输入输出示例。

The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

n V1 V2 ... Vn

where n is the number of vertices in the list, and Vi's are the vertices on a path.

Output Specification:

For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.

Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO   

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=210;
bool vis[maxn];
int G[maxn][maxn]={0};
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;i++)
	{
		int u,v;
		scanf("%d%d",&u,&v);
		G[u][v]=G[v][u]=1;
	}
	int k;
	scanf("%d",&k);
	for(int i=0;i<k;i++)
	{
		int t,v,f=1,num=0;
		scanf("%d",&t);
		vector<int> path;
		memset(vis,0,sizeof(vis));
		for(int j=0;j<t;j++)
		{
			scanf("%d",&v);
			path.push_back(v);
			if(j<t-1&&vis[v]==false)
			{
				num++;
				vis[v]=true;
			}
			if(j>0)
			{
				int v1=path[j-1],v2=path[j];
				if(G[v1][v2]==0)f=0;
			}
		}
		//cout<<f<<endl;
		if(f==1)
		{
		if(t!=n+1||num!=n||path[0]!=path[t-1])
		{
			f=0;
		}
		/*else 
		{
		   for(int j=0;j<t-1;j++)
		   {
			   int l=j+2,r=t-2;
			   if(j==0)r--;
			   for(;l<=r;l++)
			   {
				   int v1=path[j],v2=path[l];
				   if(G[v1][v2]==1)
				   {
					   cout<<v1<<v2<<endl;
					   f=0;
					   break;
				   }
			   }
		   }
		}*/
		}
		if(f==1)printf("YES\n");
		else printf("NO\n");
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值