The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.
Sample Input:6 10 6 2 3 4 1 5 2 5 3 1 4 1 1 6 6 3 1 2 4 5 6 7 5 1 4 3 6 2 5 6 5 1 4 3 6 2 9 6 2 1 6 3 4 5 2 6 4 1 2 5 1 7 6 1 3 4 5 2 6 7 6 1 2 5 4 3 1Sample Output:
YES NO NO NO YES NO
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=210;
bool vis[maxn];
int G[maxn][maxn]={0};
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u][v]=G[v][u]=1;
}
int k;
scanf("%d",&k);
for(int i=0;i<k;i++)
{
int t,v,f=1,num=0;
scanf("%d",&t);
vector<int> path;
memset(vis,0,sizeof(vis));
for(int j=0;j<t;j++)
{
scanf("%d",&v);
path.push_back(v);
if(j<t-1&&vis[v]==false)
{
num++;
vis[v]=true;
}
if(j>0)
{
int v1=path[j-1],v2=path[j];
if(G[v1][v2]==0)f=0;
}
}
//cout<<f<<endl;
if(f==1)
{
if(t!=n+1||num!=n||path[0]!=path[t-1])
{
f=0;
}
/*else
{
for(int j=0;j<t-1;j++)
{
int l=j+2,r=t-2;
if(j==0)r--;
for(;l<=r;l++)
{
int v1=path[j],v2=path[l];
if(G[v1][v2]==1)
{
cout<<v1<<v2<<endl;
f=0;
break;
}
}
}
}*/
}
if(f==1)printf("YES\n");
else printf("NO\n");
}
return 0;
}