欧几里得空间与希尔伯特空间

本文通过介绍距离、范数、内积及完备性等概念,帮助读者理解希尔伯特空间的基本定义及其与其他函数空间的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       多年以前学信号与系统的时候就听说过希尔伯特空间,但是一直不清楚这究竟是个什么东西,然而它却老是时不时在你学得最欢的时候冒出来搞得人一头雾水,于是今天专门花了很多时间总算对其概念有了一些基本的了解。本文整理自上海交通大学王维克教授的公开课,课程链接附在文末。

       欧几里得空间,希尔伯特空间,巴拿赫空间或者是拓扑空间都属于函数空间。函数空间 = 元素 + 规则 ,即一个函数空间由 元素元素所满足的规则 定义,而要明白这些函数空间的定义首先得从距离范数内积完备性等基本概念说起。


一.距离

       说到距离,我们首先想到的是点与点之间的距离,除此之外还有向量之间的距离,曲线之间的距离,函数之间的距离…。这儿谈到 距离 的定义是一种泛指的概念。点与点之间的距离距离 就类似于苹果与水果之间的关系。距离 这个概念的作用主要用于衡量同一空间不同元素之间的差异情况,从这个出发点我们可以得到关于距离的一些属性:

  1. 元素之间的距离大于等于0,若距离等于0则为相同元素。
  2. 元素A到B之间的距离等于元素B到A之间的距离。
  3. 元素之间的距离满足三角不等式。

满足以上三条属性即可称作元素之间的距离,其正式定义如下

      设X是一个非空集合,任给一对这一集合的元素 X , Y X,Y X,Y。都给定一个实数 d ( X , Y ) d(X,Y) d(X,Y) 与之对应,并且满足

  1. d ( X , Y ) ≥ 0 ; d ( X , Y ) = 0 ⇔ X = Y ; d(X,Y) \ge 0 ; \quad d(X,Y) =0 \Leftrightarrow X=Y ; d(X,Y)0;d(X,Y)=0X=Y;
  2. d ( X , Y ) = d ( Y , X ) ; d(X,Y)=d(Y,X); d(X,Y)=d(Y,X);
  3. d ( X , Y ) ≤ d ( X , Z ) + d ( Y , Z ) ; d(X,Y) \le d(X,Z)+d(Y,Z); d(X,Y)d(X,Z)+d(Y,Z);

则称 d ( X , Y ) d(X,Y) d(X,Y)是元素X,Y之间的距离

二.范数

       范数 是比 距离 限制条件更多的一个概念。为了形象地解释范数的概念,这儿在二维平面进行说明。
       在定义了 距离 这个概念之后,我们便可以描述二维平面上两个点之间的 距离 ,此时这个空间称作 度量空间 。但目前的条件没有办法描述一个点的“长度” ,因为缺少了 零点 。而范数定义之后此空间便多了一个零点,可以联想我们熟悉的平面直角坐标系,二维平面中范数可以看做是平面中的点到零点的距离。拥有范数的空间称作赋范空间,用符号 ∣ ∣ X ∣ ∣ ||X|| X表示元素 X X X的范数。因为范数的概念是在距离的概念上加了新的限制,则赋范空间一定是度量空间。我们可以用范数定义距离: d ( X , Y ) = ∣ ∣ X − Y ∣ ∣ d(X,Y)=||X-Y|| d(X,Y)=XY
总结:元素 X X X的范数 ∣ ∣ X ∣ ∣ ||X|| X可简单看做 X X X到零点的近距离。

三.线性

       线性这个概念可以说是很熟悉了,即为加法与乘法的结合。若一个空间为线性空间,只要我们知道了此空间的所有基,便可以用加法与数乘表示这一空间所有的元素,如二维平面中能用X轴的单位向量与Y轴的单位向量表示此平面的任意向量。

四.内积

       内积又称点积或者数量积,在高中学习向量的点乘运算时便接触到这一概念。在有了前面的定义之后的空间总觉得与我们最熟悉的空间还差点什么,没错,就是角度。在引入内积之后的空间便有了角度的概念。 X X X Y Y Y的内积用符号 ( X , Y ) (X,Y) (X,Y)表示,内积的结果同样是为实数。内积是在范数的概念上加了更多限制条件,即内积空间一定为赋范空间,同样的,可以用内积定义范数如下: ∣ ∣ X ∣ ∣ 2 = ( X , X ) ||X||^2 = (X,X) X2=(X,X)
       目前为止便完成了本文的大部分内容,有限维内积空间便是我们最熟悉的欧几里得空间。

五.完备性

       完备性这个概念的历史渊源比较深厚,作为非数学专业的工科生我也不太明白完备性的具体含义,简单来说对集合中的元素取极限不超出此空间便称其具有完备性。可以反向地通过不完备来理解完备性,对于整数集而言,对5取极限,便会超出整数集,即整数集不完备。
2018-10-22更正: 最近学了一点泛函,对完备性有了新的理解。完备性是在极限的基础上衍生的概念。例如在有理数集上的一个序列{1,1.4,1.41,1.414,1.4142…},可知此序列极限为 2 \sqrt{2} 2 ,而 2 \sqrt{2} 2 为无理数,不属于有理数集,即有理数集不具备完备性。

有了以上的概念理解众多迷糊人的空间便容易得多了

  1. 线性完备内积空间称作希尔伯特空间
  2. 线性完备赋范空间称作巴拿赫空间
  3. 有限维线性内积空间称作欧几里得空间

       需要更加深入地理解希尔伯特空间大概避不开泛函分析,但作为工科学生,大概了解其概念够用就好。

六.参考资料

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值