基于语义解析的KBQA论文

本文概述了从模板驱动的简单KBQA方法,到利用神经网络和复杂查询结构处理复杂问题的最新研究。涉及的知识图谱问答技术包括自动模板生成、编码复杂查询图、多跳查询和抽象意义表示的利用等。

简单KBQA

  1. Template-based question answering over RDF dataUnger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano. WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extensionQingqing Cai, Alexander Yates. ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairsJonathan Berant, Andrew Chou, Roy Frostig, Percy Liang. EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairsSiva Reddy, Mirella Lapata, Mark Steedman. TACL(2014). [PDF]
  5. Semantic parsing for single relation question answeringWen-tau Yih, Xiaodong He, Christopher Meek. ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with FreebaseXuchen Yao, Benjamin Van Durme. ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge baseWen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao. ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural networkWenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze. COLING(2016). [PDF]
  9. Learning to compose neural networks for question answeringJacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein. NAACL(2016). [PDF] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relationsYunshi Lan, Shuohang Wang, Jing Jiang. TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphsAbujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum. WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervisionChen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao. ACL(2017). [PDF] [Code]
  3. Knowledge base question answering via encoding of complex query graphsKangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu. EMNLP(2018). [PDF] [Code]
  4. Neverending learning for open-domain question answering over knowledge basesAbujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum. WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge baseSen Hu, Lei Zou, Xinbo Zhang. EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decompositionWeiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng. VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query compositionBhutani, Nikita, Xinyi Zheng, H. Jagadish. CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answeringZi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku. NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model. * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphsGaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann. ISWC(2019). [PDF] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programsAmrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti. TACL(2019). [PDF][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question AnsweringJiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu. EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graphQiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng. CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge basesYawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu. AAAI(2020). [PDF] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge baseYongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi. IJCAI(2020). [PDF] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge basesYunshi Lan, Jing Jiang. ACL(2020). [PDF] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge BasesNikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish. ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answeringPavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu. Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值