如何用labelme标注语义分割数据集

本文详细介绍了如何使用labelme工具创建和标注语义分割数据集。从下载安装anaconda,创建虚拟环境,安装labelme,到启动labelme进行图像标注,最后解析json文件生成ground truth,每个步骤都有清晰的说明和截图辅助理解。

参考  如何用labelme标注语义分割数据集 - 云+社区 - 腾讯云

采用的软件为labelme,labelme是麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,人们可以使用该工具创建定制化标注任务或执行图像标注,主要用于标记语义分割数据集。下面介绍详细的使用方法:

第一步:下载并安装anaconda,下载地址为:

https://repo.anaconda.com/archive/Anaconda2-2018.12-Windows-x86_64.exe

第二步:打开anaconda的主界面,Anaconda Navigator,如图7所示,

                                    

                                                   图7 anaconda主要功能

第三步:anaconda主界面如图8所示,点击environment进入虚拟环境创建界面

                  

                                                             图8 anaconda主界面

第四步:点击左下角Create创建虚拟环境

                                     

                                       图9 anaconda创建虚拟环境界面

第五步:创建虚拟环境,如图10所示,Name为labelme。一定要选择Python 2.7,然后点击Create。

                           

                                                            图10创建虚拟环境

第六步:已经创建了一个虚拟环境,如图11所示,点击图11的三角形启动虚拟环境,选择Open Terminal,弹出命令行窗口,如图12所示

                      

                                                                  图11启动虚拟环境

                                      

                                                                  图12 labelme虚拟环境

第七步,一次输入命令conda install pyqt和pip install labelme完成labelme的安装,遇到所有的[y/n]都选y,如图13所示,

                                             

                                                                          图13 labelme安装

第八步,输入命令labelme启动labelme,如图14所示,labelme界面如图15所示,

                                            

                                                                         图14 labelme启动

                                     

                                                                     图15 labelme主界面

第九步,标注数据集,为了使方法更具一般性,假设一幅图上同时发生了崩塌、滑坡和泥石流,如示例图像图16所示,

                                                  

                                                                         图16 示例图像

用labelme打开示例图片,如图17所示,

                                           

                                                                     图17 labelme打开的图片

点击Create polygons对目标一个一个进行标记,对目标围成一个圈之后,对滑坡、崩塌、泥石流分别取名为slide、collapse、debris_flow,完成之后生成三个目标,如下图右边所示,多了三个目标标签,完成之后保存,会生成一个.json文件,如图18所示,

                                                                        

                                                                   图18标记完成的文件

                      

                                                                  图19 labelme标记完成

第十步,对json文件进行解析生成最终的ground truth。打开anaconda下的Anaconda Prompt,输入命令activate labelme,如图20所示,

                                          

                                                                图20 json解析窗口

然后将json文件放到当前目录下,我的是C:\Users\optimal,输入命令      labelme_json_to_dataset  <文件名>.json,在当前目录下就会生成一个新的文件,我的是timg_json,如图21所示,

                                       

                                                               图21 解析完成

打开文件,文件里有四个文件如图22所示,

                              

                                                              图22标注完成的标签

对标签文件进行改名,把图片字和一个下划线加到每个文件的前面,我的是img,完成后如图23所示,

                               

                                                             图23 标注完成的文件和文件名

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值