tf.IneractiveSession

本文介绍了在交互式环境中使用TensorFlow的InteractiveSession创建默认会话,并探讨了ConfigProto配置参数,如allow_soft_placement和log_device_placement。allow_soft_placement允许运算在GPU不可用时转移到CPU,增强代码的可移植性;log_device_placement则用于在日志中记录节点的设备分配,便于调试。通过理解并合理设置这些参数,可以优化TensorFlow程序在不同环境下的运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在交互式环境下(比如python脚本或者jupyter的编辑器下),通过设置默认会话的方式来获取张量的取值更加方便。所以tensorflow提供了一种在交互式环境下直接构建默认会话的函数。这个函数就是就是tf.IneractiveSession。使用这个函数会自动生成的会话注册为默认会话。以下代码展示了tf.InteractiveSession函数的用法。

sess = tf.InteractiveSession()
print(result.eval())
sess.close()

 通过tf.InteractiveSession函数可以省去将产生的会话注册为默认会话的过程。无论使用哪种方法都可以通过ConfigProto Buffer来配置需要生成的会话。下面给出了通过ConfigProto配置会话的方法:

config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)
sess1 = tf.InteractiveSession(config = config)
sess2 = tf.Session(config = config)

通过ConfigProto可以配置类似并行的线程数、GPU分配策略、运算超时时间等参数。在这些参数中,最常使用的有两个。第一个是allow_soft_placement,这是一个布尔型的参数,当它为True时,在以下任意一个条件成立时,GPU上的运算可以放到CPU上进行:

1.运算无法在GPU上执行。

2.没有GPU资源(比如运算被指定在第二个GPU上运行,但是机器只有一个GPU)。

3.运算输入包含对CPU计算结果的引用。

这个参数的默认值为False,但是为了使得代码的可移植性更强,在有GPU的环境下这个参数一般会被设置为True。不同的GPU驱动版本可能对计算的支持有略微的区别,通过将allow_soft_placement参数设置为True,当某些运算无法被当前GPU支持时,可以自动调整到CPU上,而不是报错。类似地,通过将这个参数设置为True,可以让程序在拥有不同数量的GPU机器上顺利运行。

第二个使用得比较多的配置参数是log_device_placement。这也是一个布尔型的参数,当它为True时日志中将会记录每个节点被安排在哪个设备上以方便调试。而在换将中将这个参数设置为False可以减少日志量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值