numpy.around(a, decimals=0, out=None)[source]
Evenly round to the given number of decimals.
Parameters:
a:array_like
Input data.
decimals:int, optional
Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.
out:ndarray, optional
Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. See doc.ufuncs (Section “Output arguments”) for details.
Returns:
rounded_array:ndarray
An array of the same type as a, containing the rounded values. Unless out was specified, a new array is created. A reference to the result is returned.
The real and imaginary parts of complex numbers are rounded separately. The result of rounding a float is a float.
See also
equivalent method
Notes:
For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc.
np.around uses a fast but sometimes inexact algorithm to round floating-point datatypes. For positive decimals it is equivalent to np.true_divide(np.rint(a * 10**decimals), 10**decimals), which has error due to the inexact representation of decimal fractions in the IEEE floating point standard [1] and errors introduced when scaling by powers of ten. For instance, note the extra “1” in the following:
>>> np.round(56294995342131.5, 3)
56294995342131.51
If your goal is to print such values with a fixed number of decimals, it is preferable to use numpy’s float printing routines to limit the number of printed decimals:
>>> np.format_float_positional(56294995342131.5, precision=3)
'56294995342131.5'
The float printing routines use an accurate but much more computationally demanding algorithm to compute the number of digits after the decimal point.
Alternatively, Python’s builtin round function uses a more accurate but slower algorithm for 64-bit floating point values:
>>> round(56294995342131.5, 3)
56294995342131.5
>>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997
(16.06, 16.05)
References
“Lecture Notes on the Status of IEEE 754”, William Kahan, https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
2
“How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?”, William Kahan, https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
Examples
>>> np.around([0.37, 1.64])
array([0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])
numpy.around是用于四舍五入数组元素到指定小数位数的函数。它遵循银行家舍入规则,对于处在中间位置的数字,会倾向于四舍六入。注意,该函数可能会因浮点数的不精确性导致误差。如果需要精确控制打印的位数,推荐使用numpy的浮点数格式化方法或Python内置的round函数。示例展示了numpy.around的基本用法和可能的误差情况。
811

被折叠的 条评论
为什么被折叠?



