在前面一篇文章
本文通过一个具体的例子来说明Binder机制中Server的启动过程。我们知道,在Android系统中,提供了多媒体播放的功能,这个功能是以服务的形式来提供的。这里,我们就通过分析MediaPlayerService的实现来了解Media Server的启动过程。
首先,看一下MediaPlayerService的类图,以便我们理解下面要描述的内容。

我们将要介绍的主角MediaPlayerService继承于BnMediaPlayerService类,熟悉Binder机制的同学应该知道BnMediaPlayerService是一个Binder Native类,用来处理Client请求的。BnMediaPlayerService继承于BnInterface类,BnInterface是一个模板类,它定义在frameworks/base/include/binder/IInterface.h文件中:
template
class BnInterface :publicINTERFACE,publicBBinder
{
public:
virtual sp queryLocalInterface(const String16& _descriptor);
virtual const String16& getInterfaceDescriptor() const;
protected:
virtual IBinder* onAsBinder();
};
这里可以看出,BnMediaPlayerService实际是继承了IMediaPlayerService和BBinder类。IMediaPlayerService和BBinder类又分别继承了IInterface和IBinder类,IInterface和IBinder类又同时继承了RefBase类。
实际上,BnMediaPlayerService并不是直接接收到Client处发送过来的请求,而是使用了IPCThreadState接收Client处发送过来的请求,而IPCThreadState又借助了ProcessState类来与Binder驱动程序交互。有关IPCThreadState和ProcessState的关系,可以参考上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路,接下来也会有相应的描述。IPCThreadState接收到了Client处的请求后,就会调用BBinder类的transact函数,并传入相关参数,BBinder类的transact函数最终调用BnMediaPlayerService类的onTransact函数,于是,就开始真正地处理Client的请求了。
了解了MediaPlayerService类结构之后,就要开始进入到本文的主题了。
首先,看看MediaPlayerService是如何启动的。启动MediaPlayerService的代码位于frameworks/base/media/mediaserver/main_mediaserver.cpp文件中:
intmain(intargc,char** argv)
{
sp proc(ProcessState::self());
sp sm = defaultServiceManager();
LOGI("ServiceManager: %p", sm.get());
AudioFlinger::instantiate();
MediaPlayerService::instantiate();
CameraService::instantiate();
AudioPolicyService::instantiate();
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
}
这里我们不关注AudioFlinger和CameraService相关的代码。
先看下面这句代码:
sp proc(ProcessState::self());
这句代码的作用是通过ProcessState::self()调用创建一个ProcessState实例。ProcessState::self()是ProcessState类的一个静态成员变量,定义在frameworks/base/libs/binder/ProcessState.cpp文件中:
sp ProcessState::self()
{
if (gProcess !=NULL)returngProcess;
AutoMutex _l(gProcessMutex);
if (gProcess ==NULL) gProcess = new ProcessState;
returngProcess;
}
这里可以看出,这个函数作用是返回一个全局唯一的ProcessState实例gProcess。全局唯一实例变量gProcess定义在frameworks/base/libs/binder/Static.cpp文件中:
Mutex gProcessMutex;
sp gProcess;
再来看ProcessState的构造函数:
ProcessState::ProcessState()
: mDriverFD(open_driver())
, mVMStart(MAP_FAILED)
, mManagesContexts(false)
, mBinderContextCheckFunc(NULL)
, mBinderContextUserData(NULL)
, mThreadPoolStarted(false)
, mThreadPoolSeq(1)
{
if (mDriverFD >= 0) {
// XXX Ideally, there should be a specific defineforwhether we
// have mmap (orwhether we could possibly have the kernel module
// availabla).
#if !defined(HAVE_WIN32_IPC)
// mmap the binder, providing a chunkofvirtual addressspacetoreceive transactions.
mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
if (mVMStart == MAP_FAILED) {
// *sigh*
LOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");
close(mDriverFD);
mDriverFD = -1;
}
#else
mDriverFD = -1;
#endif
}
if (mDriverFD
// Needtorun without the driver, starting our own thread pool.
}
}
这个函数有两个关键地方,一是通过open_driver函数打开Binder设备文件/dev/binder,并将打开设备文件描述符保存在成员变量mDriverFD中;二是通过mmap来把设备文件/dev/binder映射到内存中。
先看open_driver函数的实现,这个函数同样位于frameworks/base/libs/binder/ProcessState.cpp文件中:
staticintopen_driver()
{
if (gSingleProcess) {
return-1;
}
intfd =open("/dev/binder", O_RDWR);
if (fd >= 0) {
fcntl(fd, F_SETFD, FD_CLOEXEC);
intvers;
#if defined(HAVE_ANDROID_OS)
status_t result = ioctl(fd, BINDER_VERSION, &vers);
#else
status_t result = -1;
errno = EPERM;
#endif
if (result == -1) {
LOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
close(fd);
fd = -1;
}
if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
LOGE("Binder driver protocol does not match user space protocol!");
close(fd);
fd = -1;
}
#if defined(HAVE_ANDROID_OS)
size_t maxThreads = 15;
result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
if (result == -1) {
LOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
}
#endif
}else{
LOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));
}
returnfd;
}
这个函数的作用主要是通过open文件操作函数来打开/dev/binder设备文件,然后再调用ioctl文件控制函数来分别执行BINDER_VERSION和BINDER_SET_MAX_THREADS两个命令来和Binder驱动程序进行交互,前者用于获得当前Binder驱动程序的版本号,后者用于通知Binder驱动程序,MediaPlayerService最多可同时启动15个线程来处理Client端的请求。
open在Binder驱动程序中的具体实现,请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,这里不再重复描述。打开/dev/binder设备文件后,Binder驱动程序就为MediaPlayerService进程创建了一个struct binder_proc结构体实例来维护MediaPlayerService进程上下文相关信息。
我们来看一下ioctl文件操作函数执行BINDER_VERSION命令的过程:
status_t result = ioctl(fd, BINDER_VERSION, &vers);
这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_VERSION相关的部分逻辑:
staticlong binder_ioctl(struct file *filp, unsignedintcmd, unsigned long arg)
{
intret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsignedintsize= _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*printk(KERN_INFO"binder_ioctl: %d:%d %x %lx\n", proc->pid,current->pid, cmd, arg);*/
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error
if (ret)
returnret;
mutex_lock(&binder_lock);
thread = binder_get_thread(proc);
if (thread ==NULL) {
ret = -ENOMEM;
gotoerr;
}
switch (cmd) {
......
caseBINDER_VERSION:
if (size!= sizeof(struct binder_version)) {
ret = -EINVAL;
gotoerr;
}
if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &((struct binder_version *)ubuf)->protocol_version)) {
ret = -EINVAL;
gotoerr;
}
break;
......
}
ret = 0;
err:
......
returnret;
}
很简单,只是将BINDER_CURRENT_PROTOCOL_VERSION写入到传入的参数arg指向的用户缓冲区中去就返回了。BINDER_CURRENT_PROTOCOL_VERSION是一个宏,定义在kernel/common/drivers/staging/android/binder.h文件中:
/* Thisisthecurrentprotocol version. */
#define BINDER_CURRENT_PROTOCOL_VERSION 7
这里为什么要把ubuf转换成struct binder_version之后,再通过其protocol_version成员变量再来写入呢,转了一圈,最终内容还是写入到ubuf中。我们看一下struct binder_version的定义就会明白,同样是在kernel/common/drivers/staging/android/binder.h文件中:
/* UsewithBINDER_VERSION, driver fillsinfields. */
struct binder_version {
/* driver protocol version-- increment with incompatible change */
signed long protocol_version;
};
从注释中可以看出来,这里是考虑到兼容性,因为以后很有可能不是用signed long来表示版本号。
这里有一个重要的地方要注意的是,由于这里是打开设备文件/dev/binder之后,第一次进入到binder_ioctl函数,因此,这里调用binder_get_thread的时候,就会为当前线程创建一个struct binder_thread结构体变量来维护线程上下文信息,具体可以参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。
接着我们再来看一下ioctl文件操作函数执行BINDER_SET_MAX_THREADS命令的过程:
result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_SET_MAX_THREADS相关的部分逻辑:
staticlong binder_ioctl(struct file *filp, unsignedintcmd, unsigned long arg)
{
intret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsignedintsize= _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*printk(KERN_INFO"binder_ioctl: %d:%d %x %lx\n", proc->pid,current->pid, cmd, arg);*/
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error
if (ret)
returnret;
mutex_lock(&binder_lock);
thread = binder_get_thread(proc);
if (thread ==NULL) {
ret = -ENOMEM;
gotoerr;
}
switch (cmd) {
......
caseBINDER_SET_MAX_THREADS:
if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) {
ret = -EINVAL;
gotoerr;
}
break;
......
}
ret = 0;
err:
......
returnret;
}
这里实现也是非常简单,只是简单地把用户传进来的参数保存在proc->max_threads中就完毕了。注意,这里再调用binder_get_thread函数的时候,就可以在proc->threads中找到当前线程对应的struct binder_thread结构了,因为前面已经创建好并保存在proc->threads红黑树中。
回到ProcessState的构造函数中,这里还通过mmap函数来把设备文件/dev/binder映射到内存中,这个函数在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文也已经有详细介绍,这里不再重复描述。宏BINDER_VM_SIZE就定义在ProcessState.cpp文件中:
#define BINDER_VM_SIZE ((1*1024*1024) - (4096 *2))
mmap函数调用完成之后,Binder驱动程序就为当前进程预留了BINDER_VM_SIZE大小的内存空间了。
这样,ProcessState全局唯一变量gProcess就创建完毕了,回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,下一步是调用defaultServiceManager函数来获得Service Manager的远程接口,这个已经在上一篇文章
再接下来,就进入到MediaPlayerService::instantiate函数把MediaPlayerService添加到Service Manger中去了。这个函数定义在frameworks/base/media/libmediaplayerservice/MediaPlayerService.cpp文件中:
void MediaPlayerService::instantiate() {
defaultServiceManager()->addService(
String16("media.player"), new MediaPlayerService());
}
我们重点看一下IServiceManger::addService的过程,这有助于我们加深对Binder机制的理解。
在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中说到,defaultServiceManager返回的实际是一个BpServiceManger类实例,因此,我们看一下BpServiceManger::addService的实现,这个函数实现在frameworks/base/libs/binder/IServiceManager.cpp文件中:
class BpServiceManager :publicBpInterface
{
public:
BpServiceManager(const sp& impl)
: BpInterface(impl)
{
}
......
virtual status_t addService(const String16&name, const sp& service)
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service);
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
returnerr == NO_ERROR ? reply.readExceptionCode()
}
......
};
这里的Parcel类是用来于序列化进程间通信数据用的。
先来看这一句的调用:
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
IServiceManager::getInterfaceDescriptor()返回来的是一个字符串,即"android.os.IServiceManager",具体可以参考IServiceManger的实现。我们看一下Parcel::writeInterfaceToken的实现,位于frameworks/base/libs/binder/Parcel.cpp文件中:
// Write RPC headers. (previously just the interface token)
status_t Parcel::writeInterfaceToken(const String16& interface)
{
writeInt32(IPCThreadState::self()->getStrictModePolicy() |
STRICT_MODE_PENALTY_GATHER);
// currently the interface identification tokenisjust itsnameasa string
returnwriteString16(interface);
}
它的作用是写入一个整数和一个字符串到Parcel中去。
再来看下面的调用:
data.writeString16(name);
这里又是写入一个字符串到Parcel中去,这里的name即是上面传进来的“media.player”字符串。
往下看:
data.writeStrongBinder(service);
这里定入一个Binder对象到Parcel去。我们重点看一下这个函数的实现,因为它涉及到进程间传输Binder实体的问题,比较复杂,需要重点关注,同时,也是理解Binder机制的一个重点所在。注意,这里的service参数是一个MediaPlayerService对象。
status_t Parcel::writeStrongBinder(const sp& val)
{
returnflatten_binder(ProcessState::self(), val, this);
}
看到flatten_binder函数,是不是似曾相识的感觉?我们在前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路中,曾经提到在Binder驱动程序中,使用struct flat_binder_object来表示传输中的一个binder对象,它的定义如下所示:
/*
* Thisisthe flattened representationofa Binder objectfortransfer
*betweenprocesses. The'offsets'suppliedaspartofa bindertransaction
*containsoffsetsintothe datawherethese structures occur. The Binder
* driver takes careofre-writing the structure typeanddataasit moves
*betweenprocesses.
*/
struct flat_binder_object {
/* 8 bytesforlarge_flat_header. */
unsigned long type;
unsigned long flags;
/* 8 bytesofdata. */
union{
void *binder; /*localobject */
signed long handle; /* remote object */
};
/* extra data associatedwithlocalobject */
void *cookie;
};
我们进入到flatten_binder函数看看:
status_t flatten_binder(const sp& proc,
const sp& binder, Parcel*out)
{
flat_binder_object obj;
obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
if (binder !=NULL) {
IBinder *local= binder->localBinder();
if (!local) {
BpBinder *proxy = binder->remoteBinder();
if (proxy ==NULL) {
LOGE("null proxy");
}
const int32_t handle = proxy ? proxy->handle() : 0;
obj.type = BINDER_TYPE_HANDLE;
obj.handle = handle;
obj.cookie =NULL;
}else{
obj.type = BINDER_TYPE_BINDER;
obj.binder =local->getWeakRefs();
obj.cookie =local;
}
}else{
obj.type = BINDER_TYPE_BINDER;
obj.binder =NULL;
obj.cookie =NULL;
}
returnfinish_flatten_binder(binder, obj,out);
}
首先是初始化flat_binder_object的flags域:
obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
0x7f表示处理本Binder实体请求数据包的线程的最低优先级,FLAT_BINDER_FLAG_ACCEPTS_FDS表示这个Binder实体可以接受文件描述符,Binder实体在收到文件描述符时,就会在本进程中打开这个文件。
传进来的binder即为MediaPlayerService::instantiate函数中new出来的MediaPlayerService实例,因此,不为空。又由于MediaPlayerService继承自BBinder类,它是一个本地Binder实体,因此binder->localBinder返回一个BBinder指针,而且肯定不为空,于是执行下面语句:
obj.type = BINDER_TYPE_BINDER;
obj.binder =local->getWeakRefs();
obj.cookie =local;
设置了flat_binder_obj的其他成员变量,注意,指向这个Binder实体地址的指针local保存在flat_binder_obj的成员变量cookie中。
函数调用finish_flatten_binder来将这个flat_binder_obj写入到Parcel中去:
inlinestaticstatus_t finish_flatten_binder(
const sp& binder, const flat_binder_object& flat, Parcel*out)
{
returnout->writeObject(flat,false);
}
Parcel::writeObject的实现如下:
status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
{
const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
const bool enoughObjects = mObjectsSize
if (enoughData && enoughObjects) {
restart_write:
*reinterpret_cast(mData+mDataPos) = val;
// Needtowrite meta-data?
if (nullMetaData || val.binder !=NULL) {
mObjects[mObjectsSize] = mDataPos;
acquire_object(ProcessState::self(), val, this);
mObjectsSize++;
}
// remember if it's a file descriptor
if (val.type == BINDER_TYPE_FD) {
mHasFds = mFdsKnown =true;
}
returnfinishWrite(sizeof(flat_binder_object));
}
if (!enoughData) {
const status_t err = growData(sizeof(val));
if (err != NO_ERROR)returnerr;
}
if (!enoughObjects) {
size_t newSize = ((mObjectsSize+2)*3)/2;
size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t));
if (objects ==NULL)returnNO_MEMORY;
mObjects = objects;
mObjectsCapacity = newSize;
}
gotorestart_write;
}
这里除了把flat_binder_obj写到Parcel里面之内,还要记录这个flat_binder_obj在Parcel里面的偏移位置:
mObjects[mObjectsSize] = mDataPos;
这里因为,如果进程间传输的数据间带有Binder对象的时候,Binder驱动程序需要作进一步的处理,以维护各个Binder实体的一致性,下面我们将会看到Binder驱动程序是怎么处理这些Binder对象的。
再回到BpServiceManager::addService函数中,调用下面语句:
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
回到浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文中的类图中去看一下,这里的remote成员函数来自于BpRefBase类,它返回一个BpBinder指针。因此,我们继续进入到BpBinder::transact函数中去看看:
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come backtolife.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
returnstatus;
}
returnDEAD_OBJECT;
}
这里又调用了IPCThreadState::transact进执行实际的操作。注意,这里的mHandle为0,code为ADD_SERVICE_TRANSACTION。ADD_SERVICE_TRANSACTION是上面以参数形式传进来的,那mHandle为什么是0呢?因为这里表示的是Service Manager远程接口,它的句柄值一定是0,具体请参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。
再进入到IPCThreadState::transact函数,看看做了些什么事情:
status_t IPCThreadState::transact(int32_t handle,
uint32_t code, const Parcel& data,
Parcel* reply, uint32_t flags)
{
status_t err = data.errorCheck();
flags |= TF_ACCEPT_FDS;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog <
<
<
}
if (err == NO_ERROR) {
LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
(flags & TF_ONE_WAY) == 0 ?"READ REPLY":"ONE WAY");
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data,NULL);
}
if (err != NO_ERROR) {
if (reply) reply->setError(err);
return(mLastError = err);
}
if ((flags & TF_ONE_WAY) == 0) {
#if 0
if (code == 4) { // relayout
LOGI(">>>>>> CALLING transaction 4");
}else{
LOGI(">>>>>> CALLING transaction %d", code);
}
#endif
if (reply) {
err = waitForResponse(reply);
}else{
Parcel fakeReply;
err = waitForResponse(&fakeReply);
}
#if 0
if (code == 4) { // relayout
LOGI("<<<<<
}else{
LOGI("<<<<<
}
#endif
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog <
<
if (reply) alog <
elsealog <
}
}else{
err = waitForResponse(NULL,NULL);
}
returnerr;
}
IPCThreadState::transact函数的参数flags是一个默认值为0的参数,上面没有传相应的实参进来,因此,这里就为0。
函数首先调用writeTransactionData函数准备好一个struct binder_transaction_data结构体变量,这个是等一下要传输给Binder驱动程序的。struct binder_transaction_data的定义我们在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文中有详细描述,读者不妨回过去读一下。这里为了方便描述,将struct binder_transaction_data的定义再次列出来:
struct binder_transaction_data {
/* Thefirsttwo areonlyusedforbcTRANSACTIONandbrTRANSACTION,
* identifying the targetandcontentsofthetransaction.
*/
union{
size_t handle; /* target descriptorofcommandtransaction*/
void *ptr; /* target descriptorofreturntransaction*/
} target;
void *cookie; /* target object cookie */
unsignedintcode; /*transactioncommand */
/* General information about thetransaction. */
unsignedintflags;
pid_t sender_pid;
uid_t sender_euid;
size_t data_size; /* numberofbytesofdata */
size_t offsets_size; /* numberofbytesofoffsets */
/* If thistransactionisinline, the data immediately
* follows here; otherwise, it endswitha pointerto
* the data buffer.
*/
union{
struct {
/*transactiondata */
const void *buffer;
/* offsetsfrombuffertoflat_binder_object structs */
const void *offsets;
} ptr;
uint8_t buf[8];
} data;
};
writeTransactionData函数的实现如下:
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
binder_transaction_data tr;
tr.target.handle = handle;
tr.code = code;
tr.flags = binderFlags;
const status_t err = data.errorCheck();
if (err == NO_ERROR) {
tr.data_size = data.ipcDataSize();
tr.data.ptr.buffer = data.ipcData();
tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
tr.data.ptr.offsets = data.ipcObjects();
}elseif (statusBuffer) {
tr.flags |= TF_STATUS_CODE;
*statusBuffer = err;
tr.data_size = sizeof(status_t);
tr.data.ptr.buffer = statusBuffer;
tr.offsets_size = 0;
tr.data.ptr.offsets =NULL;
}else{
return(mLastError = err);
}
mOut.writeInt32(cmd);
mOut.write(&tr, sizeof(tr));
returnNO_ERROR;
}
注意,这里的cmd为BC_TRANSACTION。 这个函数很简单,在这个场景下,就是执行下面语句来初始化本地变量tr:
tr.data_size = data.ipcDataSize();
tr.data.ptr.buffer = data.ipcData();
tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
tr.data.ptr.offsets = data.ipcObjects();
回忆一下上面的内容,写入到tr.data.ptr.buffer的内容相当于下面的内容:
writeInt32(IPCThreadState::self()->getStrictModePolicy() |
STRICT_MODE_PENALTY_GATHER);
writeString16("android.os.IServiceManager");
writeString16("media.player");
writeStrongBinder(new MediaPlayerService());
其中包含了一个Binder实体MediaPlayerService,因此需要设置tr.offsets_size就为1,tr.data.ptr.offsets就指向了这个MediaPlayerService的地址在tr.data.ptr.buffer中的偏移量。最后,将tr的内容保存在IPCThreadState的成员变量mOut中。
回到IPCThreadState::transact函数中,接下去看,(flags & TF_ONE_WAY) == 0为true,并且reply不为空,所以最终进入到waitForResponse(reply)这条路径来。我们看一下waitForResponse函数的实现:
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
int32_t cmd;
int32_t err;
while (1) {
if ((err=talkWithDriver())
err =mIn.errorCheck();
if (err
if (mIn.dataAvail() == 0)continue;
cmd =mIn.readInt32();
IF_LOG_COMMANDS() {
alog <
<
}
switch (cmd) {
caseBR_TRANSACTION_COMPLETE:
if (!reply && !acquireResult)gotofinish;
break;
caseBR_DEAD_REPLY:
err = DEAD_OBJECT;
gotofinish;
caseBR_FAILED_REPLY:
err = FAILED_TRANSACTION;
gotofinish;
caseBR_ACQUIRE_RESULT:
{
LOG_ASSERT(acquireResult !=NULL,"Unexpected brACQUIRE_RESULT");
const int32_t result =mIn.readInt32();
if (!acquireResult)continue;
*acquireResult = result ? NO_ERROR : INVALID_OPERATION;
}
gotofinish;
caseBR_REPLY:
{
binder_transaction_data tr;
err =mIn.read(&tr, sizeof(tr));
LOG_ASSERT(err == NO_ERROR,"Not enough command data for brREPLY");
if (err != NO_ERROR)gotofinish;
if (reply) {
if ((tr.flags & TF_STATUS_CODE) == 0) {
reply->ipcSetDataReference(
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t),
freeBuffer, this);
}else{
err = *static_cast(tr.data.ptr.buffer);
freeBuffer(NULL,
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t), this);
}
}else{
freeBuffer(NULL,
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t), this);
continue;
}
}
gotofinish;
default:
err = executeCommand(cmd);
if (err != NO_ERROR)gotofinish;
break;
}
}
finish:
if (err != NO_ERROR) {
if (acquireResult) *acquireResult = err;
if (reply) reply->setError(err);
mLastError = err;
}
returnerr;
}
本文深入剖析MediaPlayerService在Android系统中的启动过程,涉及BnMediaPlayerService、BnInterface、IPCThreadState和ProcessState的交互,展示了ServiceManager如何集成MediaPlayerService。从打开/dev/binder设备到创建线程池,一步步揭示了Binder驱动和Server响应Client请求的细节。
1711

被折叠的 条评论
为什么被折叠?



