HTML用作高维数据存储吗,欢迎访问《数据采集与处理》编辑部

1

Liu

S, Motani

M. Feature selection based on unique relevant information for health data [EB/OL]. (2018-12-02). https://arXiv.org/abs/1812.00415.

2

Davis

J C, Sampson

R J. Machine learning feature selection methods for landslide susceptibility mapping[J]. Mathematical Geosciences,2013, 46(1): 33-57.

3

Li

J, Hu

X, Wu

L, et al. Robust unsupervised feature selection on networked data [C] // ICDM. [S.l.]: SIAM,2016: 387-395.

4

Wang

S, Tang

J, Liu

H. Embedded unsupervised feature selection [C] // AAAI. [S.l.]: AAAI Press,2015: 471-476.

5

Guyon

I, Gunn

S, Nikravesh

M, et al. Feature extraction: Foundations and applications [M]. [S.l.]: Springer, 2008: 1-22.

6

Chandrashekar

G, Sahin

F. A survey on feature selection methods[J]. Computers & Electrical Engineering,2014, 40(1): 16-28.

7

Miao

J, Niu

L.A survey on feature selection [J]. Procedia Computer Science,2016(91): 919-926.

8

Luo

M, Nie

F, Chang

X, et al. Adaptive unsupervised feature selection with structure regularization [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 944-956.

9

He

X, Cai

D, Niyogi

P. Soft-constrained Laplacian score for semi-supervised multi-label feature selection [J]. Knowledge and Information Systems, 2016, 47(1): 75-98.

10

Brown

G, Pocock

A, Zhao

M, et al. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection [J]. Journal of Machine Learning Research,2012, 13(1): 27-66.

11

Liu

H,Motoda

H. Computational methods of feature selection [M]. [S.l.]: CRC Press, 2007: 147-165.

12

Yu

L, Liu

H. Efficient feature selection via analysis of relevance and redundancy [J]. Journal of Machine Learning Research, 2004, 5: 1205-1224.

13

Zhu

J, Rosset

S, Tibshirani

R, et al. ℓ-norm support vector machines [C]// NIPS.[S.l.]: MIT Press, 2004: 49-56.

14

Tibshirani

R. Regression shrinkage and selection via the lasso: a retrospective [J]. Journal of the Royal Statistical Society (Series B), 2011,73(3): 273-282.

15

Bach

F R. Consistency of the group and multiple kernel learning [J]. Journal of Machine Learning Research, 2008, 9: 1179-1225.

16

Shi

L, Du

L, Shen

Y D. Robust spectral learning for unsupervised feature selection [C] // ICDM. [S.l.]: SIAM, 2014: 977-982.

17

Kabir

M, Shahjahan

M, Murase

K. New local search based hybrid genetic algorithm for feature selection [J]. Neurocomputing, 2011(74): 2914-2928.

18

Cai

D, Zhang

C, He

X. Unsupervised feature selection for multi-cluster data [C] // KDD. New York: ACM, 2010: 333-342.

19

Das

K, Samanta

S, Pal

M. Study on centrality measures in social networks: A survey [EB/OL]. (2018-02-28). Social Network Analysis and Mining, https://link.springer.com/article/10.1007/s13278-018-0493-2.

20

Lazar

C, Taminau

J, Meganck

S, et al. A survey on filter techniques for feature selection in gene expression microarray analysis [J]. IEEE/ACM Trans Comput Biol Bioinform, 2012, 9(4): 1106-1119.

21

Li

J, Cheng

K, Wang

S, et al. Feature selection: A data perspective [EB/OL]. (2016-01-29). https://arXiv.org/abs/1601.07996.

22

Zhao

Z, Liu

H. Spectral feature selection for supervised and unsupervised learning [C] // ICML. New York: ACM, 2007: 1151-1157.

23

Zhu

P, Zhu

W, Hu

Q. Subspace clustering guided unsupervised feature selection[J]. Pattern Recognition, 2017(66): 364-374.

24

Yang

Y, Shen

H T, Ma

Z, et al. ℓ2,1-norm regularized discriminative feature selection for unsupervised learning[C] // IJCAI. [S.l.]: AAAI Press, 2011: 1589-1594.

25

Li

Z, Yang

Y, Liu

J, et al. Unsupervised feature selection using nonnegative spectral analysis [C] //AAAI. [S.l.]: AAAI Press, 2012: 1026-1032.

26

Zañudo

G T J, Yang

G, Albert

R. Structural control of nonlinear complex networks [J]. Proceedings of the National Academy of Sciences, 2017, 114(28): 7234-7239.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值