论文速读 -- Monocular Vision SLAM-Based UAV Autonomous Landing in Emergencies and Unknown Environments

本文提出了一种在非结构化环境中使无人机自动着陆的系统,利用3D特征与中值滤波结合的方法减少噪声,并通过区域分割检测适合着陆的网格区域。首先,通过ORB_SLAM2进行稀疏深度估计和位姿估计,然后构建带有高度信息的栅格地图。接着,使用mean-shift算法对栅格地图进行分割,寻找合适的着陆区域。最终,通过比较不同区域的着陆适宜性选择最佳着陆点,确保安全距离远离障碍物。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文速读 – Monocular Vision SLAM-Based UAV Autonomous Landing in Emergencies and Unknown Environments

参考UAV_AutoLanding_Demo.mp4

一. 摘要

无人机的着陆和回收的安全性研究势在必行,本文实现一种非结构化环境中无人机单目视觉自动着陆系统。本文提出一种融合3D特征与中通滤波结合的噪声剔除方法,并构建带有高度的栅格地图。为了提高着陆选择的速度和精度,提出了使用区域分割方式检测不同高度网格区域的边缘。作为一种视觉着陆技术,本文在两个任务中评估所提出的算法:场景重建完整性和着陆位置安全性。
首先,无人机扫描场景并获取单目关键帧进行视觉SLAM,以便估计无人机位姿,并创建三维点云地图。然后,过滤后的三维点云地图被转换为栅格地图。栅格地图被进一步划分为不同的区域选择适当的着陆区。因此,它可以进行自主路线规划。最后,当它在着陆场上停止,它将在着陆区附近启动下降模式。

二. 方法

在这里插入图片描述

1. 稀疏深度估计

ORB_SLAM2
PNP

2. 创建栅格地图

将三维点云转化为二维栅格地图,将多帧叠加的点云投影到格网内,每个格网内存在一组带有高度信息的二维点。
每个格网高度计算:
在这里插入图片描述

计算格网邻域内的高度差的平方和:
在这里插入图片描述

3. 位姿和图优化

最小二乘图优化
g2o

4. 基于区域分割的着陆检测

4.1 基于图像分割的栅格地图分割算法,伪代码如下:
输入:栅格地图
1. 使用图像中mean-shift算法对栅格地图进行平滑。
2. while 格网内点都聚类完毕 do
3.      计算和判断每个格网的邻域是否满足聚类条件
4.      加入该格网到聚类结果,存储为zi
5. end while
6. for i=0...N zi do
7.     if 格网空间距离 < hs 且高度距离 < hr
8.        将聚类结果拆分成不同类别的小块(推测目的是为了将大块区域切分成小块的可降落区域)
9.     endif
10. end for
输出:每一个格网的类别,以及聚类后的结果Li
4.2 选择最佳着陆区域算法
输入:不同类别格网的高度Ci,适当的着陆高度H,适当着陆面积S
for i=0...N Ci do
    if Ci == H 且面积s == S
        将其加入到可降落的备选集合ai
    else
        将其加入到障碍物集合bi
    end if
end for
for i=0...N ai do
    for j=0...N bj do
        计算每一个ai到每一个临近bi的距离,且做累加求和得到di
    end for
end for
输出:带有最大di距离的着陆面积ai,代表距离其余障碍物最远

三. 实验结果

详细参考原文,这里列举其中一幅图。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Darchan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值