我需要能够处理数据集,应用我的分类算法(我选择了3个朴素的bayes版本),打印精度得分到终端,并执行5到10倍交叉验证,找出有多少电子邮件是垃圾邮件。
正如你所看到的,我已经完成了一些任务,但是没有进行交叉验证,也没有发现有多少电子邮件是垃圾邮件。import numpy as np
import pandas as pd
import sklearn
from sklearn.naive_bayes import BernoulliNB
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import accuracy_score
# Read data
dataset = pd.read_csv('dataset.csv').values
# What shuffle does? How it helps?
np.random.shuffle(dataset)
X = dataset[ : , :48 ]
Y = dataset[ : , -1 ]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = .33, random_state = 17)
# Bernoulli Naive Bayes
BernNB = BernoulliNB(binarize = True)
BernNB.fit(X_train, Y_train)
y_expect = Y_test
y_pred = BernNB.predict(X_test)
print ("Bernoulli Accuracy Score: ")
print (accuracy_score(y_expect, y_pred))
# Multinomial Naive Bayes
MultiNB = MultinomialNB()
MultiNB.fit(X_train, Y_train)
y_pred = MultiNB.predict(X_test)
print ("Multinomial Accuracy Score: ")
print (accuracy_score(y_expect, y_pred))
# Gaussian Naive Bayes
GausNB = GaussianNB()
GausNB.fit(X_train, Y_train)
y_pred = GausNB.predict(X_test)
print ("Gaussian Accuracy Score: ")
print (accuracy_score(y_expect, y_pred))
# Bernoulli ALTERED Naive Bayes
BernNB = BernoulliNB(binarize = 0.1)
BernNB.fit(X_train, Y_train)
y_expect = Y_test
y_pred = BernNB.predict(X_test)
print ("Bernoulli 'Altered' Accuracy Score: ")
print (accuracy_score(y_expect, y_pred))
我已经研究了交叉验证,认为我现在可以应用这个,但它发现有多少电子邮件是垃圾邮件,我不明白???我有不同的navie bayes版本的准确性,但我如何才能真正找到垃圾邮件的数量?最后一列是1或0,它定义了它是否是垃圾邮件?所以我不知道该怎么做