主席树求区间第k小
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 1e5; // 数据范围
int tot, n, m;
int sum[(maxn << 5) + 10], rt[maxn + 10], ls[(maxn << 5) + 10],
rs[(maxn << 5) + 10];
int a[maxn + 10], ind[maxn + 10], len;
int getid(const int &val) { // 离散化
return lower_bound(ind + 1, ind + len + 1, val) - ind;
}
int build(int l, int r) { // 建树
int root = ++tot;
if (l == r) return root;
int mid = l + r >> 1;
ls[root] = build(l, mid);
rs[root] = build(mid + 1, r);
return root; // 返回该子树的根节点
}
int update(int k, int l, int r, int root) { // 插入操作
int dir = ++tot;
ls[dir] = ls[root], rs[dir] = rs[root], sum[dir] = sum[root] + 1;
if (l == r) return dir;
int mid = l + r >> 1;
if (k <= mid)
ls[dir] = update(k, l, mid, ls[dir]);
else
rs[dir] = update(k, mid + 1, r, rs[dir]);
return dir;
}
int query(int u, int v, int l, int r, int k) { // 查询操作
int mid = l + r >> 1,
x = sum[ls[v]] - sum[ls[u]]; // 通过区间减法得到左儿子中所存储的数值个数
if (l == r) return l;
if (k <= x) // 若 k 小于等于 x ,则说明第 k 小的数字存储在在左儿子中
return query(ls[u], ls[v], l, mid, k);
else // 否则说明在右儿子中
return query(rs[u], rs[v], mid + 1, r, k - x);
}
void init() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
memcpy(ind, a, sizeof ind);
sort(ind + 1, ind + n + 1);
len = unique(ind + 1, ind + n + 1) - ind - 1;
rt[0] = build(1, len);
for (int i = 1; i <= n; ++i) rt[i] = update(getid(a[i]), 1, len, rt[i - 1]);
}
int l, r, k;
void work() {
while (m--) {
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", ind[query(rt[l - 1], rt[r], 1, len, k)]); // 回答询问
}
}
int main() {
init();
work();
return 0;
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.