现在还没有什么官贴~~ 我先贴俩个链接吧 以后在改
地平线论坛- 地平线开发者社区-机器人社区-地平线
1. b站出
2.飞桨出(搬运一下 飞桨团长的-- 勿怪啊)
随着人工智能技术的发展,深度学习的运用越来越广泛,除了理论、算法、框架不断推陈出新以外,AI已经被运用在生活的方方面面。“云侧训练,端侧推理”便是人工智能运用的主要方向之一,相比GPU昂贵的价格,使用飞桨框架(AI Studio)进行模型训练,并通过地平线开发板进行推理部署,成为了经济有效,拥有着巨大潜力的方案。同时,端侧的推理部署,也不会产生隐私收集等负面问题。
开发板与开发工具介绍
本次部署使用旭日3开发板,简称X3。它是地平线针对 AIoT 场景,推出的新一代低功耗、高性能的 AI 处理器,集成了地平线最先进的伯努利2.0 架构 AI 引擎(BPU),可提供 5TOPS 等效算力。BPU 架构极大提升了对CNN 网络架构的支持效果,降低了 AI 运算对 DDR 带宽的占用率。
开发工具是地平线 “天工开物” AI 开发平台,极大简化算法开发与部署过程,降低 AI 产品的落地成本。
Paddle2ONNX介绍
Paddle2ONNX支持静态图和动态图模型转为ONNX格式,在飞桨框架升级2.0后,框架已经内置paddle.onnx.export接口,用户在代码中可以调用接口以ONNX协议格式保存模型。此外,用户已经保存的飞桨模型,也可以通过Paddle2ONNX加载后进行转换。
Paddle2ONNX支持多达88个Paddle OP算子。在转换过程中,支持用户指定转换为ONNX 1到12任意版本的模型,提升模型的适配能力。
它覆盖CV和NLP领域主流模型,不仅支持PP-YOLO这样模型新星的转换,还开始支持ERNIE这样NLP领域的王牌!它们均已支持转为ONNX进行部署,有需求的同学快去试试吧,更多详情请参考Paddle2ONNX的Github!
开发流程
如下图1所示,通过飞桨框架训练好模型之后,使用Paddle2ONNX模块进行模型转化,通过地平线天工开物平台进行模型转化与校验,最终完成上板测试整个流程。
图1
模型训练与转化
飞桨高阶API对基础API进行了封装,模型调用与数据预处理几行代码就可以搞定,建议大家多多使用。
本次教程使用mobilenetv2进行分类。数据预处理的时候,模型标签是从1-102,但是深度学习标签都是从0开始。修改的方法为:需要把标签数直接减去1,这样标签数据对齐到0-101,可以直接训练,否则会报错,标签索引超出!
使用百度的Paddle2ONNX工具进行转化,按照官方demo示例,加载模型,然后使用paddle.onnx.export接口进行转化。现在流行动态图,我们直接使用动态图操作方式进行。
模型校验
成功得到ONNX模型之后,我们需要把ONNX模型转化为板端部署文件,地平线提供了天工开物工具链,可以有效地对ONNX模型进行验证并转化。
部署第一步,使用工具链对ONNX模型进行校验,校验不通过的模型目前无法上板部署,需要调整算子或提交地平线开发人员进行算子支持升级!!
工具链可在地平线生态社区获取:
https://developer.horizon.ai/resource
图2
图3 Check结果图
使用Checker 模型校验可以判断地平线BPU模块是否支持算子推理,这是模型上板的第一步。上图为校验结果,显示出算子的运行设备。
第二步是数据准备,从训练或测试集中选取50-100张图像作为校准图像。
第三步是使用makertbin工具把ONNX模型转化为半段推理的二进制bin文件。
Model-type为ONNX、Caffe等可选模型,config_file中包含了模型转化的各种参数,包括模型输入大小,节点名称,输入类型(此处非常重要,因为板端通常接入MIPI相机等,NV12的图像数据结构与训练使用的NCHW差别较大,大部分MIPI相机输入都需要增加转化节点),模型输出layout以及推理优先级(速度优先还是带宽优先)等,下图为转化推理文件的输出结果,模型的精度保持达到97.76%。
图4 量化模型输出图
推理测试
使用天公开物工具链,调用上板测试模块:
1.构建应用:
2.数据预处理
处理好的图像将会用于后续的评测eval。
3.将构建好的应用传到开发板
执行这个命令,会将构建好的应用,通过scp,传输到开发板的 /userdata/samples/mobilenet 目录下。
若要执行单张图片的infer, 则可通过下面的代码操作远程登录开发板进行执行:
4.执行评测
该脚本会将图片传输至板上进行运行和评测, 此过程将持续很久.
5.执行性能测试
同时该操作也可从开发板上单独完成, 则可通过下面的代码操作远程登录开发板进行执行:
图5 速度验证与精度验证图
在测试集上获取70%左右的准确率,训练精度约为72.3%,保留了较高的精度,可以满足板端推理需求。
总结
飞桨高阶API可以快速有效地构建深度学习模型,地平线的天公开物开发板可以快速进行嵌入式开发部署,而且速度与精度都能得到有效的保证。百度飞桨和地平线的强强联合,进一步扩大了地平线芯片的算法生态,同时助力百度飞桨用户更好地进行多样化的AI部署。
·飞桨官网地址·
https://www.paddlepaddle.org.cn/
·飞桨开源框架项目地址·
GitHub: https://github.com/PaddlePaddle/Paddle
Gitee: https://gitee.com/paddlepaddle/Paddle