2.矩阵的寻访与赋值
在创建了矩阵之后,我们经常需要访问矩阵中的某一个或者一些元素,另外可能需要对其中的某些元素重新赋值或者删除某一部分元素。本节介绍如何进行矩阵的寻访与赋值。
2.1 矩阵的标识
本小节介绍单个元素标识和寻访的3种方式:全下标、单下标、逻辑1标识。
1.全下标标识
经典数学教科书在引述具体矩阵元素时,通常采用全下标标识法,即指出某一元素是在第几行第几列。这种标识方法的优点是:几何概念清楚,引述简单。全下标标识法在MATLAB的寻访和赋值中因为最为直观,所以它最为常用。
对于二维矩阵来说,全下标标识由两个下标组成:行下标、列下标。如A(3,5)表示二维矩阵A的第3行第5列。
这里值得注意的是,MATLAB中对下标的标识是从1开始的,就是和我们平时在数学中使用的说法是一致的。这和其他一些编程语言从0开始标识是不同的。
2.单下标标识
MATLAB尽管是以矩阵作为基本的计算单元,但是矩阵的后台存储并不是像显示出来的那样成长方形排列的,而是按照单下标标识作为一列存储到内存中。单下标标识就是“只用一个下标来指明元素在矩阵中的位置”。当然,这样做首先要对二维矩阵的所有元素进行“一维编号”。所谓“一维编号”就是:先设想把二维矩阵的所有列,按照先左后右的次序首尾相连排成一维长列,然后自上而下对元素位置进行编号。
单下标与全下标的转换关系:以m´n的二维矩阵A为例,若全下标的元素位置是“第a行,第b列”,那么相应的单下标则为c=(b-1)*m+a。
在MATLAB中,有两个函数可以实现全下标和单下标的转换。
sub2ind&#