MobileNet V2-SSD 检测头数目解析

博客主要介绍了目标检测相关内容,包括Backbone网络结构、检测头结构、Prior Box,还对mbox_loc、mbox_conf_flatten、mbox_priorbox进行了解析,涉及从6层feature map出来的prior box相对位置结果拼接及相关计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Backbone网络结构
idbottomlayer namestopkernelpadstridechanel outputoutput num
0datainput/////(1, 3, 300, 300)
1dataconv1 + conv1/bn + conv1/scale + relu1conv1/bn31232(1, 32, 150, 150)
2_1conv1/bnconv2_1/expand + conv2_1/expand/bn + conv2_1/expand/scale + relu2_1/expandconv2_1/expand/bn10132(1, 32, 150, 150)
2_1conv2_1/expand/bnconv2_1/dwise + conv2_1/dwise/bn + conv2_1/dwise/scale + relu2_1/dwiseconv2_1/dwise/bn311group(1, 32, 150, 150)
2_1conv2_1/dwise/bnconv2_1/linear + conv2_1/linear/bn + conv2_1/linear/scaleconv2_1/linear/bn10116(1, 16, 150, 150)
2_2conv2_1/linear/bnconv2_2/expand + conv2_2/expand/bn + conv2_2/expand/scale + relu2_2/expandconv2_2/expand/bn10196(1, 96, 150, 150)
2_2conv2_2/expand/bnconv2_2/dwise + conv2_2/dwise/bn + conv2_2/dwise/scale + relu2_2/dwiseconv2_2/dwise/bn312group(1, 32, 75, 75)
2_2conv2_2/dwise/bnconv2_2/linear + conv2_2/linear/bn + conv2_2/linear/scaleconv2_2/linear/bn10124(1, 24, 75, 75)
3_1conv2_2/linear/bnconv3_1/expand + conv3_1/expand/bn + conv3_1/expand/scale + relu3_1/expandconv3_1/expand/bn101144(1, 144, 75, 75)
3_1conv3_1/expand/bnconv3_1/dwise + conv3_1/dwise/bn + conv3_1/dwise/scale + relu3_1/dwiseconv3_1/dwise/bn311group(1, 144, 75, 75)
3_1conv3_1/dwise/bnconv3_1/linear + conv3_1/linear/bn + conv3_1/linear/scaleconv3_1/linear/bn10124(1, 24, 75, 75)
blockconv2_2/linear/bn + conv3_1/linear/bnblock_3_1block_3_1////(1, 24, 75, 75)
3_2conv3_1/linear/bnconv3_2/expand + conv3_2/expand/bn + conv3_2/expand/scale + relu3_2/expandconv3_2/expand/bn101144(1, 144, 75, 75)
3_2conv3_2/expand/bnconv3_2/dwise + conv3_2/dwise/bn + conv3_2/dwise/scale + relu3_2/dwiseconv3_2/dwise/bn312group(1, 144, 38, 38)
3_2conv3_2/dwise/bnconv3_2/linear + conv3_2/linear/bn + conv3_2/linear/scaleconv3_2/linear/bn10132(1, 32, 38, 38)
4_1conv3_2/linear/bnconv4_1/expand + conv4_1/expand/bn + conv4_1/expand/scale + relu4_1/expandconv4_1/expand/bn101192(1, 192, 38, 38)
4_1conv4_1/expand/bnconv4_1/dwise + conv4_1/dwise/bn + conv4_1/dwise/scale + relu4_1/dwiseconv4_1/dwise/bn311group(1, 192, 38, 38)
4_1conv4_1/dwise/bnconv4_1/linear + conv4_1/linear/bn + conv4_1/linear/scaleconv4_1/linear/bn10132(1, 32, 38, 38)
blockconv3_2/linear/bn + conv4_1/linear/bnblock_4_1block_4_1////(1, 32, 38, 38)
4_2conv4_1/linear/bnconv4_2/expand + conv4_2/expand/bn + conv4_2/expand/scale + relu4_2/expandconv4_2/expand/bn101192(1, 192, 38, 38)
4_2conv4_2/expand/bnconv4_2/dwise + conv4_2/dwise/bn + conv4_2/dwise/scale + relu4_2/dwiseconv4_2/dwise/bn311group(1, 192, 38, 38)
4_2conv4_2/dwise/bnconv4_2/linear + conv4_2/linear/bn + conv4_2/linear/scaleconv4_2/linear/bn10132(1, 32, 38, 38)
blockblock4_1 + conv4_2/linear/bnblock_4_2block_4_2////(1, 32, 38, 38)
4_3conv4_2/linear/bnconv4_3/expand + conv4_3/expand/bn + conv4_3/expand/scale + relu4_3/expandconv4_3/expand/bn101192(1, 192, 38, 38)
4_3conv4_3/expand/bnconv4_3/dwise + conv4_3/dwise/bn + conv4_3/dwise/scale + relu4_3/dwiseconv4_3/dwise/bn311group(1, 192, 38, 38)
4_3conv4_3/dwise/bnconv4_3/linear + conv4_3/linear/bn + conv4_3/linear/scaleconv4_3/linear/bn10164(1, 64, 38, 38)
4_4conv4_3/linear/bnconv4_4/expand + conv4_4/expand/bn + conv4_4/expand/scale + relu4_4/expandconv4_4/expand/bn101384(1, 384, 38, 38)
4_4conv4_4/expand/bnconv4_4/dwise + conv4_4/dwise/bn + conv4_4/dwise/scale + relu4_4/dwiseconv4_4/dwise/bn311group(1, 384, 38, 38)
4_4conv4_4/dwise/bnconv4_4/linear + conv4_4/linear/bn + conv4_4/linear/scaleconv4_4/linear/bn10164(1, 64, 38, 38)
blockconv4_3/linear/bn + conv4_4/linear/bnblock_4_4block_4_4////(1, 64, 38, 38)
4_5conv4_4/linear/bnconv4_5/expand + conv4_5/expand/bn + conv4_5/expand/scale + relu4_5/expandconv4_5/expand/bn101384(1, 384, 38, 38)
4_5conv4_5/expand/bnconv4_5/dwise + conv4_5/dwise/bn + conv4_5/dwise/scale + relu4_5/dwiseconv4_5/dwise/bn311group(1, 384, 38, 38)
4_5conv4_5/dwise/bnconv4_5/linear + conv4_5/linear/bn + conv4_5/linear/scaleconv4_5/linear/bn10164(1, 64, 38, 38)
blockblock_4_4 + conv4_5/linear/bnblock_4_5block_4_5////(1, 64, 38, 38)
4_6conv4_5/linear/bnconv4_6/expand + conv4_6/expand/bn + conv4_6/expand/scale + relu4_6/expandconv4_6/expand/bn101384(1, 384, 38, 38)
4_6conv4_6/expand/bnconv4_6/dwise + conv4_6/dwise/bn + conv4_6/dwise/scale + relu4_6/dwiseconv4_6/dwise/bn311group(1, 384, 38, 38)
4_6conv4_6/dwise/bnconv4_6/linear + conv4_6/linear/bn + conv4_6/linear/scaleconv4_6/linear/bn10164(1, 64, 38, 38)
blockblock_4_5 + conv4_6/linear/bnblock_4_6block_4_6////(1, 64, 38, 38)
4_7conv4_6/linear/bnconv4_7/expand + conv4_7/expand/bn + conv4_7/expand/scale + relu4_7/expandconv4_7/expand/bn101384(1, 384, 38, 38)
4_7conv4_7/expand/bnconv4_7/dwise + conv4_7/dwise/bn + conv4_7/dwise/scale + relu4_7/dwiseconv4_7/dwise/bn312group(1, 384, 19, 19)
4_7conv4_7/dwise/bnconv4_7/linear + conv4_7/linear/bn + conv4_7/linear/scaleconv4_7/linear/bn10196(1, 96, 19, 19)
5_1conv4_7/linear/bnconv5_1/expand + conv5_1/expand/bn + conv5_1/expand/scale + relu5_1/expandconv5_1/expand/bn101576(1, 576, 19, 19 )
5_1conv5_1/expand/bnconv5_1/dwise + conv5_1/dwise/bn + conv5_1/dwise/scale + relu5_1/dwiseconv5_1/dwise/bn311group(1, 576, 19, 19)
5_1conv5_1/dwise/bnconv5_1/linear + conv5_1/linear/bn + conv5_1/linear/scaleconv5_1/linear/bn10196(1, 96, 19, 19)
blockblock_4_7 + conv5_1/linear/bnblock_5_1block_5_1////(1, 96, 19, 19)
5_2conv5_1/linear/bnconv5_2/expand + conv5_2/expand/bn + conv5_2/expand/scale + relu5_2/expandconv5_2/expand/bn101576(1, 576, 19, 19 )
5_2conv5_2/expand/bnconv5_2/dwise + conv5_2/dwise/bn + conv5_2/dwise/scale + relu5_2/dwiseconv5_2/dwise/bn311group(1, 576, 19, 19)
5_2conv5_2/dwise/bnconv5_2/linear + conv5_2/linear/bn + conv5_2/linear/scaleconv5_2/linear/bn10196(1, 96, 19, 19)
blockblock_5_1 + conv5_2/linear/bnblock_5_2block_5_2////(1, 96, 19, 19)
5_3conv5_2/linear/bnconv5_3/expand + conv5_3/expand/bn + conv5_3/expand/scale + relu5_3/expandconv5_3/expand/bn101576(1, 576, 19, 19)
5_3conv5_3/expand/bnconv5_3/dwise + conv5_3/dwise/bn + conv5_3/dwise/scale + relu5_3/dwiseconv5_3/dwise/bn312group(1, 576, 10, 10)
5_3conv5_3/dwise/bnconv5_3/linear + conv5_3/linear/bn + conv5_3/linear/scaleconv5_3/linear/bn101160(1, 160, 10, 10)
6_1conv5_3/linear/bnconv6_1/expand + conv6_1/expand/bn + conv6_1/expand/scale + relu6_1/expandconv6_1/expand/bn101960(1, 960, 10, 10 )
6_1conv6_1/expand/bnconv6_1/dwise + conv6_1/dwise/bn + conv6_1/dwise/scale + relu6_1/dwiseconv6_1/dwise/bn311group(1, 960, 10, 10)
6_1conv6_1/dwise/bnconv6_1/linear + conv6_1/linear/bn + conv6_1/linear/scaleconv6_1/linear/bn101160(1, 160, 10, 10)
blockconv5_3/linear/bn + conv6_1/linear/bnblock_6_1block_6_1////(1, 160, 10, 10)
6_2conv6_1/linear/bnconv6_2/expand + conv6_2/expand/bn + conv6_2/expand/scale + relu6_2/expandconv6_2/expand/bn101960(1, 960, 10, 10 )
6_2conv6_2/expand/bnconv6_2/dwise + conv6_2/dwise/bn + conv6_2/dwise/scale + relu6_2/dwiseconv6_2/dwise/bn311group(1, 960, 10, 10)
6_2conv6_2/dwise/bnconv6_2/linear + conv6_2/linear/bn + conv6_2/linear/scaleconv6_2/linear/bn101160(1, 160, 10, 10)
blockblock_6_1 + conv6_2/linear/bnblock_6_2block_6_2////(1, 160, 10, 10)
6_3conv6_2/linear/bnconv6_3/expand + conv6_3/expand/bn + conv6_3/expand/scale + relu6_3/expandconv6_3/expand/bn101960(1, 960, 10, 10 )
6_3conv6_3/expand/bnconv6_3/dwise + conv6_3/dwise/bn + conv6_3/dwise/scale + relu6_3/dwiseconv6_3/dwise/bn311group(1, 960, 10, 10)
6_3conv6_3/dwise/bnconv6_3/linear + conv6_3/linear/bn + conv6_3/linear/scaleconv6_3/linear/bn101320(1, 320, 10, 10)
6_4conv6_3/linear/bnconv6_4 + conv6_4/bn + conv6_4/scale + relu6_4conv6_4/bn1011280(1, 1280, 10, 10)
14_1conv6_4/bnconv14_1 + conv14_1/bn + conv14_1/scale + conv14_1/reluconv14_1101256(1, 256, 10, 10)
14_2conv14_1conv14_2 + conv14_2/bn + conv14_2/scale + conv14_2/reluconv14_2312512(1, 512, 5, 5)
15_1conv14_2conv15_1 + conv15_1/bn + conv15_1/scale + conv15_1/reluconv15_1101128(1, 128, 5, 5)
15_2conv15_1conv15_2 + conv15_2/bn + conv15_2/scale + conv15_2/reluconv15_2312256(1, 256, 3, 3)
16_1conv15_2conv16_1 + conv16_1/bn + conv16_1/scale + conv16_1/reluconv16_1101128(1, 128, 3, 3)
16_2conv16_1conv16_2 + conv16_2/bn + conv16_2/scale + conv16_2/reluconv16_2312256(1, 256, 2, 2)
检测头结构
idbottominput numlayer namestopkernelpadstridechanel outputoutput num
loc_1conv4_7/expand/bn(1, 384, 38, 38)conv5_mbox_locconv5_mbox_loc10116(1, 4*4, 38, 38)
conf_1conv4_7/expand/bn(1, 384, 38, 38)conv5_mbox_confconv5_mbox_conf101cls4x(1, 4*cls, 38, 38)
box_1conv4_7/expand/bn(1, 384, 38, 38)conv5_mbox_priorboxconv5_mbox_priorbox////size:16~45, 4个
loc_2conv5_3/expand/bn(1, 576, 19, 19)conv11_mbox_locconv11_mbox_loc10124(1, 4*6, 19, 19)
conf_2conv5_3/expand/bn(1, 576, 19, 19)conv11_mbox_confconv11_mbox_conf1016*cls(1, 6*cls, 19, 19)
box_2conv5_3/expand/bn(1, 576, 19, 19)conv11_mbox_priorboxconv11_mbox_priorbox////size:45~99, 6个
loc_3conv6_4/expand/bn(1, 1280, 10, 10)conv13_mbox_locconv13_mbox_loc10124(1, 4*6, 10, 10)
conf_3conv6_4/expand/bn(1, 1280, 10, 10)conv13_mbox_confconv13_mbox_conf1016*cls(1, 6*cls, 10, 10)
box_3conv6_4/expand/bn(1, 1280, 10, 10)conv13_mbox_priorboxconv13_mbox_priorbox////size:99~153, 6个
loc_4conv14_2(1, 512, 5, 5)conv14_2_mbox_locconv14_2_mbox_loc10124(1, 4*6, 5, 5)
conf_4conv14_2(1, 512, 5, 5)conv14_2_mbox_confconv14_2_mbox_conf1016*cls(1, 6*cls, 5, 5)
box_4conv14_2(1, 512, 5, 5)conv14_2_mbox_priorboxconv14_2_mbox_priorbox////size:153~207, 6个
loc_5conv15_2(1, 256, 3, 3)conv15_2_mbox_locconv15_2_mbox_loc10124(1, 4*6, 3, 3)
conf_5conv15_2(1, 256, 3, 3)conv15_2_mbox_confconv15_2_mbox_conf1016*cls(1, 6*cls, 3, 3)
box_5conv15_2(1, 256, 3, 3)conv15_2_mbox_priorboxconv15_2_mbox_priorbox////size:207~261, 6个
loc_6conv16_2(1, 256, 2, 2)conv16_2_mbox_locconv16_2_mbox_loc10124(1, 4*6, 2, 2)
conf_6conv16_2(1, 256, 2, 2)conv16_2_mbox_confconv16_2_mbox_conf1016*cls(1, 6*cls, 2, 2)
box_6conv16_2(1, 256, 2, 2)conv16_2_mbox_priorboxconv16_2_mbox_priorbox////size:261~315, 6个
Prior Box
idlayer namemin sizemax sizeratiobox numsize list
1conv5_mbox_priorbox16452.04(16,16),(27,27),(23,11),(11,23)
2conv11_mbox_priorbox45992.0,3.06(45,45),(67,67),(64,32),(32,64),(78)
3conv13_mbox_priorbox991532.0,3.06140,
4conv16_2_mbox_priorbox1532072.0,3.06216
5conv15_2_mbox_priorbox2072612.0,3.06293
6conv16_2_mbox_priorbox2613152.0,3.06369
解析 mbox_loc:

从6层feature map出来的prior box的相对位置结果(x, y, w, h)的拼接

idlayer namesizeoutput numbox num
1conv5_mbox_loc_flat38*384 / 1638x38x4=5776
2conv11_mbox_loc_flat19*196 / 2419x19x6=2166
3conv13_mbox_loc_flat10*106 / 2410x10x6=600
4conv14_2_mbox_loc_flat5*56 / 245x5x6=150
5conv15_2_mbox_loc_flat3*36 / 243x3x6=54
6conv16_2_mbox_loc_flat2*26 / 242x2x6=24

5776+2166+600+150+54+24=8770
8770*4=35080

mbox_conf_flatten:
idlayer namesizeoutput numbox num
1conv5_mbox_conf_flat38*384 / 4*cls_num38x38x4=5776
2conv11_mbox_conf_flat19*196 / 6*cls_num19x19x6=2166
3conv13_mbox_conf_flat10*106 / 6*cls_num10x10x6=600
4conv14_2_mbox_conf_flat5*56 / 6*cls_num5x5x6=150
5conv15_2_mbox_conf_flat3*36 / 6*cls_num3x3x6=54
6conv16_2_mbox_conf_flat2*26 / 6*cls_num2x2x6=24

5776+2166+600+150+54+24=8770
8770*cls_num= 8770 cls_num

mbox_priorbox
idlayer namesizeoutput numbox num
1conv5_mbox_priorbox38*384 / 1638x38x4=5776
2conv11_mbox_priorbox19*196 / 2419x19x6=2166
3conv13_mbox_priorbox10*106 / 2410x10x6=600
4conv14_2_mbox_priorbox5*56 / 245x5x6=150
5conv15_2_mbox_priorbox3*36 / 243x3x6=54
6conv16_2_mbox_priorbox2*26 / 242x2x6=24

5776+2166+600+150+54+24=8770
8770*4=35080
(1, 2 35080)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值