dis java,火花java.io.IOException异常:dis上没有足够的空间

在8节点的Windows Spark集群上尝试用4000万条记录和6600个特征的数据集进行Logistic回归训练时,遇到了Py4JJavaError和SparkException,错误指出任务失败由于磁盘空间不足。尽管每个节点有56GB RAM和8个内核,以及1.9TB的Spark驱动程序容量,但数据序列化过程中的磁盘溢出导致了任务的失败。可能需要调整Spark配置以优化内存使用或解决磁盘空间问题。

我在一个8节点的spark集群上运行logistic回归算法,每个节点有8个内核和56gb的Ram(每个节点都运行windows系统)。spark安装驱动程序的容量为1.9 TB。我在are上训练的数据集有大约4000万条记录,有大约6600个特征。但在培训过程中,我总是会遇到这样的错误:Py4JJavaError: An error occurred while calling o70.trainLogisticRegressionModelWithLBFGS.

: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2709 in stage 3.0 failed 4 times, most recent failure: Lost task 2709.3 in stage 3.0 (TID 2766, workernode0.rbaHdInsightCluster5.b6.internal.cloudapp.net): java.io.IOException: There is not enough space on the disk

at java.io.FileOutputStream.writeBytes(Native Method)

at java.io.FileOutputStream.write(FileOutputStream.java:345)

at java.io.BufferedOutputStream.write(BufferedOutputStream.java:122)

at org.xerial.snappy.SnappyOutputStream.dumpOutput(SnappyOutputStream.java:300)

at org.xerial.snappy.SnappyOutputStream.rawWrite(SnappyOutputStream.java:247)

at org.xerial.snappy.SnappyOutputStream.write(SnappyOutputStream.java:107)

at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1876)

at java.io.ObjectOutputStream$BlockDataOutputStream.writeByte(ObjectOutputStream.java:1914)

at java.io.ObjectOutputStream.writeFatalException(ObjectOutputStream.java:1575)

at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:350)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)

at org.apache.spark.serializer.SerializationStream.writeAll(Serializer.scala:110)

at org.apache.spark.storage.BlockManager.dataSerializeStream(BlockManager.scala:1177)

at org.apache.spark.storage.DiskStore.putIterator(DiskStore.scala:78)

at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:787)

at org.apache.spark.storage.BlockManager.putIterator(BlockManager.scala:638)

at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:145)

at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)

at org.apache.spark.rdd.RDD.iterator(RDD.scala:243)

at org.apache.spark.rdd.FilteredRDD.compute(FilteredRDD.scala:34)

at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:278)

at org.apache.spark.rdd.RDD.iterator(RDD.scala:245)

at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)

at org.apache.spark.scheduler.Task.run(Task.scala:56)

at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:200)

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)

at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:

at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)

at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)

at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)

at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)

at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)

at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)

at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)

at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)

at scala.Option.foreach(Option.scala:236)

at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)

at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)

at akka.actor.Actor$class.aroundReceive(Actor.scala:465)

at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)

at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)

at akka.actor.ActorCell.invoke(ActorCell.scala:487)

at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)

at akka.dispatch.Mailbox.run(Mailbox.scala:220)

at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)

at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)

at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)

at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)

at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)

代码如下:

^{pr2}$

有谁能分享一下这方面的经验吗?在

distribution 5164993695324625b305e84adb377fc1 2025-07-16 13:45:00.028 INFO 6 --- [http-nio-7069-exec-4] c.s.v.u.d.controller.DisWithdrawController[86] : withdrawalStatus调用开始 distribution 5164993695324625b305e84adb377fc1 2025-07-16 13:45:00.028 INFO 6 --- [http-nio-7069-exec-4] c.s.v.u.d.service.impl.DisWithdrawServiceImpl[547] : withdrawalStatus调用service开始 Creating a new SqlSession SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@1c67a5ab] was not registered for synchronization because synchronization is not active JDBC Connection [com.alibaba.druid.proxy.jdbc.ConnectionProxyImpl@2969fb39] will not be managed by Spring ==> Preparing: select * from dis_withdraw_task where valid_flag=1 and exec_time<SYSDATE() and exec_time is not null and withdrawal_method=? ==> Parameters: 2(Integer) <== Total: 0 Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@1c67a5ab] distribution 5164993695324625b305e84adb377fc1 2025-07-16 13:45:00.032 ERROR 6 --- [http-nio-7069-exec-4] vshx.usp.common.advice.GlobalExceptionAdvisor[208] : 请求地址: /disWithdraw/queryAutoDivideAccount . 异常信息: org.apache.catalina.connector.ClientAbortException: java.io.IOException: Connection reset by peer at org.apache.catalina.connector.OutputBuffer.doFlush(OutputBuffer.java:310) ~[tomcat-embed-core-9.0.65.jar!/:na] at org.apache.catalina.connector.OutputBuffer.flush(OutputBuffer.java:273) ~[tomcat-embed-core-9.0.65.jar!/:na] at org.apache.catalina.connector.CoyoteOutputStream.flush(CoyoteOutputStream.java:118) ~[tomcat-embed-core-9.0.65.jar!/:na] at java.io.FilterOutputStream.flush(FilterOutputStream.java:140) ~[na:1.8.0_212] at com.fasterxml.jackson.core.json.UTF8JsonGenerator.flush(UTF8JsonGenerator.java:1187) ~[jackson-core-2.13.3.jar!/:2.13.3] at com.fasterxml.jackson.databind.ObjectWriter.writeValue(ObjectWriter.java:1009) ~[jackson-databind-2.13.3.jar!/:2.13.3] at org.springframework.http.converter.json.AbstractJackson2HttpMessageCon
07-17
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值