独家原创 | Matlab实现CNN-Transformer多变量时间序列预测
目录
- 独家原创 | Matlab实现CNN-Transformer多变量时间序列预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
1.Matlab实现CNN-Transformer多变量时间序列预测;
2.运行环境为Matlab2023b及以上;
3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;
传统的 CNN 在图像处理任务中表现出色,能够有效地提取局部特征,并通过层级结构捕捉图像中的抽象特征。然而,CNN 在处理长期依赖关系时可能存在一些限制,这在自然语言处理等序列数据任务中尤为明显。相比之下,Transformer 模型由于自注意力机制能够有效地捕捉序列数据中的长期依赖关系,因此在自然语言处理任务中取得了重要的突破。然而,Transformer 模型对于图像处理任务来说可能过于复杂,因为图像数据通常具有高维度和局部结构,这导致在处理图像时 Transformer 的计算量较大。为了充分利用 CNN 在图像处理中的优势和 Transformer 在捕捉长期依赖关系中的优势,CNN-Transformer 模型将输入数据首先通过 CNN 进行局部特征提取。CNN 层可以有效地捕捉图像中的局部模式和特征。然后,提取的特征被输入到 Transformer 模型中,以便利用其自注意力机制来捕捉全局的长期依赖关系。
程序设计
- 完整程序和数据下载私信博主回复Matlab实现CNN-Transformer多变量时间序列预测。