如果没有特殊业务要求,请牢记仅使用UTF-8编码。
在Mac和Linux上是可以的,方法是在.py
文件的第一行加上一个特殊的注释:
#!/usr/bin/env python3
print('hello, world')
然后,通过命令给hello.py
以执行权限:
$ chmod a+x hello.py
就可以直接运行hello.py
了
如果字符串里面有很多字符都需要转义,就需要加很多\
,为了简化,Python还允许用r''
表示''
内部的字符串默认不转义
布尔值可以用and
、or
和not
运算。
and
运算是与运算,只有所有都为True
,and
运算结果才是True
:
or
运算是或运算,只要其中有一个为True
,or
运算结果就是True
:
not
运算是非运算,它是一个单目运算符,把True
变成False
,False
变成True
空值是Python里一个特殊的值,用None
表示。None
不能理解为0
,因为0
是有意义的,而None
是一个特殊的空值。
a = 'ABC'
时,Python解释器干了两件事情:
-
在内存中创建了一个
'ABC'
的字符串; -
在内存中创建了一个名为
a
的变量,并把它指向'ABC'
。
也可以把一个变量a
赋值给另一个变量b
,这个操作实际上是把变量b
指向变量a
所指向的数据
数据类型
Python 定义了一些标准类型,用于存储各种类型的数据。
Python有五个标准的数据类型:
- Numbers(数字)
- String(字符串)
- List(列表)
- Tuple(元组)
- Dictionary(字典)
Python数字
数字数据类型用于存储数值。
他们是不可改变的数据类型,这意味着改变数字数据类型会分配一个新的对象。
当你指定一个值时,Number对象就会被创建:
var1 = 1
var2 = 10
也可以使用del语句删除一些对象的引用。
del语句的语法是:
del var1[,var2[,var3[....,varN]]]]
您可以通过使用del语句删除单个或多个对象的引用。例如:
del var
del var_a, var_b
Python字符串
字符串或串(String)是由数字、字母、下划线组成的一串字符。
如果你要实现从字符串中获取一段子字符串的话,可以使用变量 [头下标:尾下标],就可以截取相应的字符串,其中下标是从 0 开始算起,可以是正数或负数,下标可以为空表示取到头或尾。
比如:
s = 'ilovepython'
s[1:5]的结果是love。
当使用以冒号分隔的字符串,python返回一个新的对象,结果包含了以这对偏移标识的连续的内容,左边的开始是包含了下边界。
上面的结果包含了s[1]的值l,而取到的最大范围不包括上边界,就是s[5]的值p。
加号(+)是字符串连接运算符,星号(*)是重复操作。如下实例(paython2.0+):
#!/usr/bin/python
# -*- coding: UTF-8 -*-
str = 'Hello World!'
print str # 输出完整字符串
print str[0] # 输出字符串中的第一个字符
print str[2:5] # 输出字符串中第三个至第五个之间的字符串
print str[2:] # 输出从第三个字符开始的字符串
print str * 2 # 输出字符串两次
print str + "TEST" # 输出连接的字符串
Python列表
List(列表) 是 Python 中使用最频繁的数据类型。
列表可以完成大多数集合类的数据结构实现。它支持字符,数字,字符串甚至可以包含列表(即嵌套)。
列表用 [ ] 标识,是 python 最通用的复合数据类型。
列表中值的切割也可以用到变量 [头下标:尾下标] ,就可以截取相应的列表,从左到右索引默认 0 开始,从右到左索引默认 -1 开始,下标可以为空表示取到头或尾。
如果要取最后一个元素,除了计算索引位置外,还可以用-1
做索引,直接获取最后一个元素
加号 + 是列表连接运算符,星号 * 是重复操作
#!/usr/bin/python
# -*- coding: UTF-8 -*-
list = [ 'runoob', 786 , 2.23, 'john', 70.2 ]
tinylist = [123, 'john']
print list # 输出完整列表
print list[0] # 输出列表的第一个元素
print list[1:3] # 输出第二个至第三个元素
print list[2:] # 输出从第三个开始至列表末尾的所有元素
print tinylist * 2 # 输出列表两次
print list + tinylist # 打印组合的列表
Python元组
元组是另一个数据类型,类似于List(列表),但是tuple一旦初始化就不能修改,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a'
,就不能改成指向'b'
,指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!
元组用"()"标识。内部元素用逗号隔开。
>>> t = (1, 2)
>>> t
(1, 2)
如果要定义一个空的tuple,可以写成()
:
>>> t = ()
>>> t
()
但是,要定义一个只有1个元素的tuple,如果你这么定义:
>>> t = (1)
>>> t
1
定义的不是tuple,是1
这个数!这是因为括号()
既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1
。
所以,只有1个元素的tuple定义时必须加一个逗号,
,来消除歧义
>>> t = (1,)
>>> t
(1,)
但是元组不能二次赋值,相当于只读列表。
#!/usr/bin/python
# -*- coding: UTF-8 -*-
tuple = ( 'runoob', 786 , 2.23, 'john', 70.2 )
tinytuple = (123, 'john')
print tuple # 输出完整元组
print tuple[0] # 输出元组的第一个元素
print tuple[1:3] # 输出第二个至第三个的元素
print tuple[2:] # 输出从第三个开始至列表末尾的所有元素
print tinytuple * 2 # 输出元组两次
print tuple + tinytuple # 打印组合的元组
Python 字典
字典(dictionary)是除列表以外python之中最灵活的内置数据结构类型。列表是有序的对象集合,字典是无序的对象集合。
两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。
字典用"{ }"标识。字典由索引(key)和它对应的值value组成。
需要牢记的第一条就是dict的key必须是不可变对象
#!/usr/bin/python
# -*- coding: UTF-8 -*-
dict = {}
dict['one'] = "This is one"
dict[2] = "This is two"
tinydict = {'name': 'john','code':6734, 'dept': 'sales'}
print dict['one'] # 输出键为'one' 的值
print dict[2] # 输出键为 2 的值
print tinydict # 输出完整的字典
print tinydict.keys() # 输出所有键
print tinydict.values() # 输出所有值
把数据放入dict的方法,除了初始化时指定外,还可以通过key放入,如果key不存在,dict就会报错,要避免key不存在的错误,有两种办法,
一是通过in
判断key是否存在
>>> 'Thomas' in d
False
二是通过dict提供的get()
方法,如果key不存在,可以返回None
,或者自己指定的value
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
要删除一个key,用pop(key)
方法,对应的value也会从dict中删除:
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
set
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}
注意,传入的参数[1, 2, 3]
是一个list,而显示的{1, 2, 3}
只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。
重复元素在set中自动被过滤:
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}
函数
在Python中,定义一个函数要使用def
语句,依次写出函数名、括号、括号中的参数和冒号:
,然后,在缩进块中编写函数体,函数的返回值用return
语句返回
空函数
如果想定义一个什么事也不做的空函数,可以用pass
语句:
def nop():
pass
返回多个值
原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple
11.函数参数
位置参数
默认参数
设置默认参数时,有几点要注意:
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7)
,意思是,除了name
,gender
这两个参数外,最后1个参数应用在参数age
上,city
参数由于没有提供,仍然使用默认值。
也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。
默认参数必须指向不变对象
可变参数
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple
Python允许你在list或tuple前面加一个*
号,把list或tuple的元素变成可变参数传进去
关键字参数
可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
**extra
表示把extra
这个dict的所有key-value用关键字参数传入到函数的**kw
参数,kw
将获得一个dict,注意kw
获得的dict是extra
的一份拷贝,对kw
的改动不会影响到函数外的extra
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city
和job
作为关键字参数。这种方式定义的函数如下:
def person(name, age, *, city, job):
print(name, age, city, job)
和关键字参数**kw
不同,命名关键字参数需要一个特殊分隔符*
,*
后面的参数被视为命名关键字参数。
调用方式如下:
>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer
如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*
了:
def person(name, age, *args, city, job):
print(name, age, args, city, job)
命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:
>>> person('Jack', 24, 'Beijing', 'Engineer')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: person() takes 2 positional arguments but 4 were given
使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*
作为特殊分隔符。如果缺少*
,Python解释器将无法识别位置参数和命名关键字参数:
def person(name, age, city, job):
# 缺少 *,city和job被视为位置参数
pass
参数组合
在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
def f1(a, b, c=0, *args, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)
高级特性
列表生成式
列表生成式即List Comprehensions,Python内置的可以用来创建list的生成式
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x
放到前面,后面跟for
循环,就可以把list创建出来
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
生成器
Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。
一、第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误
二、
如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done