hdu 1588 Gauss Fibonacci

本文介绍了一道名为GaussFibonacci的算法题目,该题要求计算特定的斐波那契数列之和,并提供了高效的矩阵快速幂求解方法。通过分析题目背景及数学原理,给出了清晰的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击此处即可传送hdu 1588

                           **Gauss Fibonacci**
Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2849    Accepted Submission(s): 1179



Problem Description

Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.

Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)

The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.




Input

The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
Each of them will not exceed 1,000,000,000.





Output

For each line input, out the value described above.




Sample Input

2 1 4 100
2 0 4 100





Sample Output

21
12

题目大意:给你四个数,k, b, n, m,然后,分别表示题干中的意思,就是求F(g(i)) i从0到n-1的和

解题思路:就是推一下,具体看代码吧,
上代码:

/*
2015 - 8 - 15 下午
Author: ITAK

今天感觉还可以,买了一个机械键盘,又要少吃几顿饭了。。。

今日的我要超越昨日的我,明日的我要胜过今日的我,
以创作出更好的代码为目标,不断地超越自己。
*/

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int max1 = 4;
const int max2 = 2;

int mod;
typedef struct
{
    LL m[max1][max1];
}Matrix1;

typedef struct
{
    LL m[max2][max2];
} Matrix2;
Matrix1 P1 = {0,1,1,0,
              0,0,0,1,
              0,0,1,0,
              0,0,0,1
             };
Matrix1 I1 = {1,0,0,0,
              0,1,0,0,
              0,0,1,0,
              0,0,0,1
             };

Matrix2 P2 = {0,1,
              1,1
             };
Matrix2 I2 = {1,0,
              0,1
             };
Matrix1 matrix1mul(Matrix1 a, Matrix1 b)
{
    Matrix1 c;
    for(int i=0; i<max1; i++)
    {
        for(int j=0; j<max1; j++)
        {
            c.m[i][j] = 0;
            for(int k=0; k<max1; k++)
            {
                c.m[i][j] += (a.m[i][k]%mod)*(b.m[k][j]%mod)%mod;
            }
            c.m[i][j] %= mod;
        }
    }
    return c;
}

Matrix1 quick_mod1(LL n)
{
    Matrix1 ans = I1, m = P1;
    while(n)
    {
        if(n & 1)
            ans = matrix1mul(ans, m);
        n >>= 1;
        m = matrix1mul(m,m);
    }
    return ans;
}

Matrix2 matrix2mul(Matrix2 a, Matrix2 b)
{
    Matrix2 c;
    for(int i=0; i<max2; i++)
    {
        for(int j=0; j<max2; j++)
        {
            c.m[i][j] = 0;
            for(int k=0; k<max2; k++)
            {
                c.m[i][j] += (a.m[i][k]%mod)*(b.m[k][j]%mod)%mod;
            }
            c.m[i][j] %= mod;
        }
    }
    return c;
}

Matrix2 quick_mod2(LL n)
{
    Matrix2 ans = I2, m = P2;
    while(n)
    {
        if(n & 1)
            ans = matrix2mul(ans, m);
        n >>= 1;
        m = matrix2mul(m,m);
    }
    return ans;
}
int main()
{
    LL n, b, k;
    Matrix2 tmp1, tmp2;
    Matrix1 tmp;
    while(cin>>k>>b>>n>>mod)
    {
        tmp1 = quick_mod2(k);
        tmp2 = quick_mod2(b);
     """P1.m[0][0] = tmp1.m[0][0];
        P1.m[0][1] = tmp1.m[0][1];
        P1.m[1][0] = tmp1.m[1][0];
        P1.m[1][1] = tmp1.m[1][1];"""
        tmp = quick_mod1(n);
        LL ans=(tmp2.m[0][0]%mod*tmp.m[0][3]%mod)%mod+
               (tmp2. m[0][1]%mod*tmp.m[1][3]%mod)%mod;
        ans = (ans+mod)%mod;
        cout<<ans<<endl;
    }
    return 0;
}
### 使用多种编程语言实现输出斐波那契数列的前四项 以下是几种常见编程语言实现输出斐波那契数列前四项的方法: #### C++ 实现 在C++中可以通过简单的循环来计算并打印斐波那契数列的前几项。 ```cpp #include <iostream> using namespace std; int main() { cout << "Fibonacci数列的前4项如下:" << endl; int a = 1, b = 1; // 初始化前两项 cout << a << " " << b << " "; // 打印前两项 for (int i = 1; i <= 2; ++i) { // 计算并打印后续两项 int nextTerm = a + b; cout << nextTerm << " "; a = b; b = nextTerm; } cout << endl; return 0; } ``` 此代码片段基于引用中的逻辑[^1],简化为仅输出前四项。 --- #### Python 实现 Python 提供了一种简洁的方式来生成斐波那契数列。通过列表推导或其他方法可轻松完成任务。 ```python def fibonacci_four_terms(): terms = [1, 1] # 初始两个值 for _ in range(2): # 添加接下来的两项 terms.append(terms[-1] + terms[-2]) return terms[:4] result = fibonacci_four_terms() print("Fibonacci数列的前4项:", result) ``` 上述代码利用了动态数组的概念,类似于引用中的描述[^2],但调整为了只生成四个数值。 --- #### Java 实现 Java 中可以借助 `ArrayList` 来存储和操作斐波那契序列。 ```java import java.util.ArrayList; public class FibonacciFourTerms { public static void main(String[] args) { ArrayList<Integer> fabList = new ArrayList<>(); fabList.add(1); fabList.add(1); for (int i = 2; i < 4; i++) { fabList.add(fabList.get(i - 1) + fabList.get(i - 2)); } System.out.println("Fibonacci数列的前4项:"); for (Integer num : fabList) { System.out.print(num + " "); } } } ``` 这段代码参考了 Java 的实现方式[^5],并对范围进行了修改以便适应当前需求。 --- #### C 实现 对于更基础的语言如C,则可以直接采用数组或者变量交换的方式处理。 ```c #include <stdio.h> void print_fibonacci_first_four() { int first = 1, second = 1; printf("%d %d ", first, second); // 输出前两项目 for(int i = 3; i <= 4; i++) { // 继续计算剩余部分直到第四项为止 int third = first + second; printf("%d ", third); first = second; second = third; } } int main(){ print_fibonacci_first_four(); return 0; } ``` 该版本遵循传统迭代模式构建结果集,并且保持简单明了结构设计思路来自其他例子[^3]^。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值