进程的虚拟地址空间

本文介绍了进程虚拟地址空间的划分,包括内核空间和用户空间。详细解释了如何使用__get_free_page()、kmalloc()和vmalloc()申请内核空间,并通过示例程序展示了用户空间的数据段、BSS段、堆和堆栈段的具体分布。

进程的虚拟地址空间

转载:http://edsionte.com/techblog/archives/1922

1.内核空间

一般可以通过__get_free_page()kmalloc()vmalloc()来申请内核空间。只不过__get_free_page函数每次申请的都是完整的页;而后两者则依据具体参数申请以字节为单位的内存空间。此外,前两个函数申请的虚拟地址空间和物理地址空间都是连续的;vmalloc函数申请的物理地址空间并不连续。vmalloc函数通过重新建立虚拟地址空间和物理地址空间之间的映射,即新建页表项,将离散的物理地址空间映射到连续的虚拟地址空间。因此,使用该函数的开销比较大。

下面的程序简单的演示了这三个函数的使用方法。从结果中可以看出,这些函数申请的地址都在3GB(0xBFFFFFFF)以上。


static int __init mmshow_init(void)
{
    printk("mmshow module is working\n");

    pagemem = __get_free_page(GFP_KERNEL);
    if(!pagemem)
        goto gfp_fail;
    printk(KERN_INFO "pagemem = 0x%lx\n",pagemem);

    kmallocmem = kmalloc(100 * sizeof(char),GFP_KERNEL);
    if(!kmallocmem)
        goto kmalloc_fail;
    printk(KERN_INFO "kmallocmem = 0x%p\n",kmallocmem);

    vmallocmem = vmalloc(1000000 * sizeof(char));
    if(!vmallocmem)
        goto vmalloc_fail;
    printk(KERN_INFO "vmallocmem = 0x%p\n",vmallocmem);

    return 0;

gfp_fail:
    free_page(pagemem);
kmalloc_fail:
    kfree(kmallocmem);
vmalloc_fail:
    vfree(vmallocmem);

    return -1;
}
//运行结果:
[ 5542.073900] mmshow module is working
[ 5542.073904] pagemem = 0xf3211000
[ 5542.073907] kmallocmem = 0xd581e700
[ 5542.073983] vmallocmem = 0xf9251000

2.用户空间

如前所述,每个进程够拥有属于自己的3GB的虚拟空间,那么这个3GB的空间是如何划分的?通常,除了我们熟悉的代码段和数据段,用户空间还包括堆栈段和堆。我们可以通过下面的演示程序来了解这些区域到底负责存储程序的那些内容。

int bss_var;
int data_var0 = 1;

int main(int argc,char **argv)
{
    printf("The user space's address division of a process as follow:\n");
    printf("Data segment:\n");
    printf("address of \"main\" function:%p\n\n",main);

        printf("Data segment:\n");
    printf("address of data_var:%p\n",&data_var0);
    static int data_var1 = 4;
    printf("new end of data_var:%p\n\n",&data_var1);

        printf("BSS:\n");
    printf("address of bss_var:%p\n\n",&bss_var);

    char *str = (char *)malloc(sizeof(char)*10);
    printf("initial heap end:%p\n",str);
    char *buf = (char *)malloc(sizeof(char)*10);
    printf("new heap end:%p\n\n",buf);

        int stack_var0 = 2;
    printf("Stack segment:\n");
    printf("initial end of stack:%p\n",&stack_var0);
    int stack_var1 = 3;
    printf("new end of stack:%p\n",&stack_var1);

    return 0;
}
//运行结果:
The user space's address division of a process as follow:
Data segment:
address of "main" function:0x8048454
Data segment:
address of data_var:0x804a01c
new end of data_var:0x804a020
BSS:
address of bss_var:0x804a02c
initial heap end:0x8f77008
new heap end:0x8f77018
Stack segment:
initial end of stack:0xbfe0a3b4
new end of stack:0xbfe0a3b0

可以看到,代码段存放程序的代码;数据段存放全局变量和static类型的局部变量。此外,未初始化的全局变量虽然也存在于数据段,但是这些未初始化的变量都集中在靠近数据段上边界的区域,这个区域称为BSS段。以上这些空间是进程所必须拥有的,它们在进程运行之前就分配好了。

程序中的局部变量一般被分配在堆栈段,其位于用户空间最顶部。与固定的代码段和数据段不同的是,堆栈段存储数据是从高低值往低地址延伸的。因此,在数据段到堆栈段之间,形成了一片空洞,这片空洞用于存储malloc函数所动态分配的空间,这片空洞区域被称为堆。

通过下面这个图可以更进一步的了解到进程用户空间的划分情况。

转载于:https://www.cnblogs.com/muahao/p/7526189.html

角色体系 支持管理员、商家、消费者三种角色,权限分级管控: 管理员:负责平台整体配置、用户审核、数据监控等全局操作。 商家:管理店铺信息、发布商品、处理订单、回复评价等。 消费者:浏览商品、加入购物车、下单支付、评价商品等。 实现用户注册(手机号 / 邮箱验证)、登录(支持密码 / 验证码 / 第三方登录)、个人信息管理(头像、收货地址、密码修改)。 权限精细化控制 商家仅能管理自家店铺及商品,消费者仅能查看和购买商品,管理员拥有全平台数据访问权限。 二、商品管理功能 商品信息维护 商家可发布商品:填写名称、分类(如服饰、电子产品)、子类别(如手机、笔记本)、规格(尺寸、颜色、型号)、价格、库存、详情描述(图文)、物流信息(运费、发货地)等。 支持商品上下架、库存调整、信息编辑,系统自动记录商品状态变更日志。 商品分类与搜索 按级分类展示商品(如 “数码产品→手机→智能手机”),支持自定义分类体系。 提供智能搜索功能:按关键词(名称、品牌)搜索,支持模糊匹配和搜索联想;结合用户浏览历史对搜索结果排序(优先展示高相关度商品)。 商品推荐 基于用户浏览、收藏、购买记录,推荐相似商品(如 “浏览过该商品的用户还买了…”)。 首页展示热门商品(销量 TOP10)、新品上架、限时折扣等推荐列表。 三、订单与交易管理 购物车与下单 消费者可将商品加入购物车,支持修改数量、选择规格、移除商品,系统自动计算总价(含运费、折扣)。 下单流程:确认收货地址→选择支付方式(在线支付、货到付款)→提交订单→系统生成唯一订单号。 订单处理流程 订单状态跟踪:待支付→已支付→商家发货→物流运输→消费者收货→订单完成,各状态变更实时通知用户。 商家端功能:查看新订单提醒、确认发货(填写物流单号)、处理退款申请(需审核理由)。 消费者端功能:查看订单详情、追踪物流、申请退款 / 退货、确认收货。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值