转自:https://blog.youkuaiyun.com/u011637069/article/details/79593114
addWorker方法
源码比较长,看起来比较唬人,其实就做了两件事。1)才用循环CAS操作来将线程数加1;2)新建一个线程并启用。
源码如下:
private boolean addWorker (Runnable firstTask,boolean core){ //(1)循环CAS操作,将线程池中的线程数+1. retry: for (; ; ) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && !(rs == SHUTDOWN && firstTask == null && !workQueue.isEmpty())) return false; for (; ; ) { int wc = workerCountOf(c); //core true代表是往核心线程池中增加线程 false代表往最大线程池中增加线程 //线程数超标,不能再添加了,直接返回 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //CAS修改clt的值+1,在线程池中为将要添加的线程流出空间,成功退出cas循环,失败继续 if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl //如果线程池的状态发生了变化回到retry外层循环 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } //(2)新建线程,并加入到线程池workers中。 boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //对workers操作要通过加锁来实现 final ReentrantLock mainLock = this.mainLock; w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { //细化锁的力度,防止临界区过大,浪费时间 mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int c = ctl.get(); int rs = runStateOf(c); //判断线程池的状态 if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { //判断添加的任务状态,如果已经开始丢出异常 if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); //将新建的线程加入到线程池中 workers.add(w); int s = workers.size(); //修正largestPoolSize的值 if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } //线程添加线程池成功,则开启新创建的线程 if (workerAdded) { t.start();//(3) workerStarted = true; } } } finally { //线程添加线程池失败或者线程start失败,则需要调用addWorkerFailed函数, //如果添加成功则需要移除,并回复clt的值 if (!workerStarted) addWorkerFailed(w); } return workerStarted; }
逻辑分析
Worker类
继承自AQS,具有锁的功能,实现了Runable接口,具有线程的功能。
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; //线程池中正真运行的线程。通过我们指定的线程工厂创建而来 final Thread thread; //线程包装的任务。thread 在run时主要调用了该任务的run方法 Runnable firstTask; //记录当前线程完成的任务数 volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; //利用我们指定的线程工厂创建一个线程 this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); }
由源码可知,Worker类的run方法实际上调用的还是ThreadPoolExecutor的runworker方法。下面将看一下ThreadPoolExecutor的runworker源代码和注释解析。
final void runWorker (Worker w){ Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { w.lock(); //线程池处于stop状态或者当前线程被中断时,线程池状态是stop状态。 //但是当前线程没有中断,则发出中断请求 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) { wt.interrupt(); } try { //开始执行任务前的Hook,类似回调函数 beforeExecute(wt, task); Throwable thrown = null; try { //执行任务 task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //任务执行后的Hook,类似回调函数 afterExecute(task, thrown); } } finally { //执行完毕后task重置,completedTasks计数器++,解锁 task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { //线程空闲达到我们设定的值时,Worker退出销毁。 processWorkerExit(w, completedAbruptly); } }
大概意思就是当前任务不为null或者从队列中取的任务不为null时,worker线程就一直去执行任务。当无要执行的任务时,尝试回收线程。
runWorker函数中最重要的是getTask(),他不断的从阻塞队列中取任务交给线程执行。下面分析一下:
private Runnable getTask () { boolean timedOut = false; // Did the last poll() time out? retry: for (; ; ) { int c = ctl.get(); int rs = runStateOf(c); //如果线程池处于shutdown状态, //并且队列为空,或者线程池处于stop或者terminate状态, //在线程池数量-1,返回null,回收线程 if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } //标识当前线程在空闲时,是否应该超时回收 boolean timed; for (; ; ) { int wc = workerCountOf(c); //如果allowCoreThreadTimeOut 为ture //或者当前线程数量大于核心线程池数目, //则需要超时回收 timed = allowCoreThreadTimeOut || wc > corePoolSize; //(1) //如果线程数目小于最大线程数目, //且不允许超时回收或者未超时, //则跳出循环,继续去阻塞队列中取任务(2) if (wc <= maximumPoolSize && !(timedOut && timed)) break; //如果上面if没有成立,则当前线程数-1,返回null,回收该线程 if (compareAndDecrementWorkerCount(c)) return null; //如果上面if没有成立,则CAS修改ctl失败,重读,cas循环重新尝试修改 c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } //(2) try { //如果允许空闲回收,则调用阻塞队列的poll, //否则take,一直等到队列中有可取任务 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); //取到任务,返回任务, //否则超时timedOut = true;进入下一个循环, //并且在(1)处会不成立,进而进入到cas修改ctl的程序中 if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }