Dijkstra Algorithm 迪克特斯拉算法--Python

本文详细介绍了迪克斯特拉算法的基本原理及实现步骤,并通过一个具体的示例演示了如何使用该算法找到图中从起始节点到目标节点的最短路径。文中还提供了Python代码实现,帮助读者更好地理解算法的具体运作。

迪克斯拉特算法:

1、找出代价最小的节点,即可在最短时间内到达的节点;

2、更新节点的邻居的开销;

3、重复这个过程,直到图中的每个节点都这样做了;

4、计算最终路径。

 

'''
迪克斯特拉算法:
1、以字典的方式更新图,包括权重
2、创建开销字典,关键在于起点临近的点开销为实际数值,其他点为暂时未到达,开销为无穷,随后更新
3、创建父节点列表保存每个点的父节点,以便记录走过的路径
'''
from queue import LifoQueue

graph = {}
graph['start'] = {}
graph['start']['a'] = 6
graph['start']['b'] = 2
graph['a'] = {}
graph['a']['end'] = 4
graph['b'] = {}
graph['b']['a'] = 3
graph['b']['c'] = 2
graph['c'] = {}
graph['c']['end'] = 3
graph['end'] = {}
print(graph)

infinity = float('inf')
costs = {}
costs['a'] = 6
costs['b'] = 2
costs['c'] = infinity
costs['end'] = infinity

parents = {}
parents['a'] = 'start'
parents['b'] = 'start'
parents['c'] = 'b'
parents['end'] = None

processed = []

def find_lowest_cost_node(costs):
    lowest_cost = float('inf')
    lowest_cost_node = None
    for node in costs:
        cost = costs[node]
        if (cost < lowest_cost and node not in processed):
            lowest_cost = cost
            lowest_cost_node = node
    return lowest_cost_node

node = find_lowest_cost_node(costs)
while(node is not None):
    cost = costs[node]
    neighbors = graph[node]
    for n in neighbors.keys():
        new_cost = cost + neighbors[n]
        if costs[n] > new_cost:
            costs[n] = new_cost
            parents[n] = node
    processed.append(node)
    node = find_lowest_cost_node(costs)

#输出最短路径
p = 'end'
path = LifoQueue()
while(True):
    path.put(p)
    if(p == 'start'):
        break
    p = parents[p]

while not path.empty():
    print(path.get())

 

转载于:https://www.cnblogs.com/fredkeke/p/9233661.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值