Machine Learning 之Logistic回归算法中最小二乘法的Matlab曲线拟合

本文介绍如何使用Matlab实现逻辑回归中的最小二乘法进行曲线拟合。通过给定的数据点添加随机噪音并生成散列点集,利用Matlab内置函数polyfit和polyval完成拟合过程,并展示拟合结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Machine Learning 之Logistic回归算法中最小二乘法的Matlab曲线拟合


逻辑回归是机器学习(Machine Learning)中常见的机器学习算法,在处理逻辑回归(Logistic Regression)离散数据点集时,最常用的算法是最小二乘法。古代欧洲没有“平方”的叫法,“二乘”其实就是平方。逻辑回归是相对于线性回归而言,线性回归可以较好拟合连续值。但是现实世界中的数据样本往往是非连续性的。逻辑回归可以构建更理想的拟合曲线,拟合现实世界中的散列数据集。
matlab提供了polyfit和polyval支持最小二乘法。举个例子,以常见的曲线方程:




为例。现在给y增加少量的随机噪音,然后生成一些不规则、散列的点,然后算出这些散列点的拟合曲线。matlab代码:

t=randn(1,101);

x=[-10:0.2:10];
y=x.^2+t*6; 
s=scatter(x,y); 
s.LineWidth = 0.6;
s.MarkerEdgeColor = 'g';
s.MarkerFaceColor = [0 0.7 0.7];
hold on; 

p=polyfit(x,y,2)
y1=polyval(p,x);
plot(x,y1,'-r','LineWidth',1);

grid on;

p =

    0.9988   -0.0762    0.9286


拟合曲线(红色)结果如图:



本例是在y=x*x,y值上增加小的常量随机噪音6*t,那么逻辑回归后的多项式,理想结果应该还是y=x*x。经过拟合后的多项式系数为:

p =

    0.9988   -0.0762    0.9286

最终获得拟合的多项式即为:


拟合结果很好的拟合了围绕y=x*x的随机散列点。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值