机器学习-Whitening(白化)

本文探讨深度学习中白化预处理的作用及实现。通过去除输入数据的冗余性,增强模型训练效率。白化过程包括PCA特征抽取与方差归一化,确保各特征独立且方差相等。
部署运行你感兴趣的模型镜像

  whitening (白化)这个词,可能在深度学习领域比较常遇到,其实whitening 是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法。

  假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的;whitening (白化)的目的就是降低输入的冗余性。
输入数据集X,经过白化处理后,新的数据X'满足两个性质:
  (1)特征之间相关性较低;
  (2)所有特征具有相同的方差。

  其实我们之前学的PCA算法时,给我们的印象是PCA一般用于降维操作。其实PCA并不是降维,而是仅仅使用PCA求出特征向量,然后把数据X映射到新的特征空间,这样的一个映射过程,其实就是满足了我们白化的第一个性质:除去特征之间的相关性。因此白化算法的实现过程,第一步操作就是PCA,求出新特征空间中X的新坐标,然后再对新的坐标进行方差归一化操作。

转载于:https://www.cnblogs.com/zxj9487/p/10774587.html

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值