concepts in Turbulent Flow

本文深入探讨了湍流的基本概念,包括湍流涡粘度、湍流动能、柯尔莫哥洛夫长度尺度等关键参数。解析了湍流强度的计算方法及不同尺度涡旋在湍流能量级联中的作用,同时介绍了k-ε湍流模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

 

1 Concepts/Glossary

eddy
any spatial flow pattern that persists for a short time.
Eddy
(oxford dictionary) a circular movement of air,water
homogeneous
the statistical characteristics of turbulence is independent of location of space.
homogeneous turbulence
a turbulent flow, on the average, is uniform in all directions ( Wilcox)
integral length scale
length scale of largest eddy, L
Isotropic
the statistical characteristics of turbulence is independent of the direction of space.
stationary process (turbulence)
the statistics of a random variable, U(mean property), are independent of time (stationary / stationary process)
Turbulence intensity
I = u' rms/ U , where u' rms : root-mean-square of the fluctuating velocity
Production of TKE (production)
\(\mathcal{P}\), rate of production of turbulent kinetic energy (Eq. (5.133), pope)

\[ \mathcal{P}= - <u_i u_j> \frac{ \partial <U_i> }{\partial x_j } \]

1.1 Turbulent eddy viscosity ,μt

  • not a fluid property

analogy: molucular stress <-> turbulent stress

1.2 Turbulent kinetic energy (TKE)

TKE
mean kinetic energy per unit mass associated with eddies in turbulent flow.

\[ k = \frac{1}{2} \left(\, \overline{(u')^2} + \overline{(v')^2} + \overline{(w')^2} \,\right) \]

\[ k=0.5<u_i u_i>= 0.5 < \mathbf{u} \cdot \mathbf{u}> \] (4.24, pope)

  • physically, TKE is the mean kinetic energy per unit mass in the fluctuating velocity field (u').
  • half the trace of the Reynolds stress tensor

1.3 Kolmogorov length scale, η

\[ \eta = (\frac{\nu^3}{\epsilon})^{1/4} \]

1.4 turbulent length scale, ℓ

integral length scale
L, the size of the largest eddies, which are constrained by the physical boundaries of the flow
(Kolmogorove length scale)
η, the size of smallest eddies which is determined by viscosity
(no term)
the size of large eddy

Different-length-scales-and-ranges-in-turbulence-energy-cascade.png

Figure 1: Different length scales and ranges in turbulence energy cascade (Fig. 6.1 Pope)

k-ε model \[ \ell = C_\mu^{3/4} \, \frac{k^\frac{3}{2}}{\epsilon} \]

  • \( C_\mu \) model constant

1.5 turbulent kinetic energy dissipation rate, ε

kinetic energy disspated by viscosity per unit mass unit time

1.6 Turbulence intensity, I

Ideally, you will have a good estimate of the turbulence intensity at the inlet boundary from external, measured data. For example, if you are simulating a wind-tunnel experiment, the turbulence intensity in the free stream is usually available from the tunnel characteristics. In modern low-turbulence wind tunnels, the free-stream turbulence intensity may be as low as 0.05%.

\[ I = u'_rms/ U \]

  • u'rms : root-mean-square of the fluctuating velocity

< 1% low > 10% high

Author: kaiming

Created: 2019-02-27 Wed 18:18

Emacs 24.5.1 (Org mode 8.2.10)

Validate

转载于:https://www.cnblogs.com/code-saturne/p/10445769.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值