HDU-1695(莫比乌斯反演)

求解特定区间内GCD为定值的数对数量
本文介绍了一种算法,用于计算在特定区间[a,b]和[c,d]内,所有满足最大公约数为k的数对(x,y)的数量。文章详细解释了算法的推导过程,并提供了AC代码实现,使用了莫比乌斯函数和筛法进行优化。

题意:设a, b, c, d, k。 x属于[a, b], y属于[c, d]。问满足gcd(x, y)=k的(x, y)的对数是多少?注意:a=c=1;

公式推导:

注意一下,中间过程别爆精度:

ac代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 1e5 + 5;
bool vis[N];
int mu[N], prime[N];
void mobiws()
{
    int cnt = 0;
    mu[1] = 1;
    for (int i = 2; i < N; ++i)
    {
        if (!vis[i])
        {
            prime[++cnt] = i;    mu[i] = -1;
        }
        for (int j = 1; j<=cnt&&prime[j] * i < N; ++j)
        {
            vis[prime[j] * i] = 1;
            if (i%prime[j] == 0){ mu[prime[j] * i] = 0; break; }
            mu[prime[j] * i] =- mu[i];
        }
    }
    for (int i = 2; i < N; ++i)mu[i] += mu[i - 1];
}
ll cal(int n, int m, int d)
{
    if (!n || !m || !d)return 0;
    n /= d; m /= d;
    int last;
    ll ans = 0;
    for (int i = 1; i <= min(n, m); i = last + 1)
    {
        last = min(n / (n / i), m / (m / i));
        ans += (mu[last] - mu[i - 1])*(1LL)*(n / i)*(1LL)*(m / i);
    }
    return ans;
}
int main()
{
    mobiws();
    int t, a, b, c, d, k, cas = 0;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
        printf("Case %d: ", ++cas);
        ll ans = cal(b, d, k) - cal(min(b, d), min(b, d), k)/2;
        printf("%lld\n", ans);
    }
}

 

转载于:https://www.cnblogs.com/ALINGMAOMAO/p/9683720.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值