本设计报告提出了一种基于Python和C++的智能光网络管理平台,该平台通过将大语言模型(通义千问、DeepSeek)与光传输链路仿真引擎相结合,实现了用户意图驱动的光网络全生命周期管理。平台采用分层架构,上层应用通过自然语言交互理解用户需求,下层仿真引擎基于物理模型精确模拟多波长信号在复杂网络拓扑中的传输特性。系统设计注重扩展性、易用性和可移植性,能够支持规划设计、故障定位和运维优化等全生命周期应用,为光网络运营商提供了一套完整的智能管理工具。
系统架构设计
系统架构采用三层分层设计,确保各模块间的清晰划分和高效协作:
1. 用户交互层:基于大语言模型的自然语言处理系统,负责理解用户意图、提取参数配置、提供交互式仿真需求配置界面。
2. 仿真引擎层:采用Python和C++混合编程实现的光网络仿真核心,包含光纤、EDFA和WSS等基础器件的物理模型,支持多波长信号在复杂拓扑中的功率和信噪比仿真。
3. 数据管理层:负责存储仿真配置、运行结果和网络性能数据,支持历史数据查询和分析报告生成。

核心模块交互流程:
- 用户通过自然语言接口提出仿真需求
- 大语言模型解析用户意图并提取关键参数
- 仿真引擎根据配置参数构建网络拓扑模型
- 执行多波长信号传输仿真,计算功率和信噪比变化
- 数据管理层存储仿真结果并生成分析报告
- 上层应用将报告呈现给用户并支持进一步优化
光器件传输特性模型
光纤模型
光纤传输特性模型包含以下关键参数和计算公式:
```python
class OpticalFiber:
def __init__(self, length, alpha_dbkm, beta_2, NA, core_diameter):
self.length = length 光纤长度(km)
self.alpha_dbkm = alpha_dbkm 衰减系数(dB/km)
self(beta_2) = beta_2 色散系数(ps/nm/km)
self.NA = NA 数值孔径
self.core_diameter = core_diameter 芯径(μm)
self.modes = self.calculateModes() 计算支持的模式数
def calculateModes(self):
"""计算光纤支持的模式数"""
return (pi * self.NA * self.core_diameter * 1e-6) 2
def calculatePowerLoss(self, wavelength, input_power):
"""计算光纤传输功率损失"""
考虑材料色散和波导色散
dispersion_loss_db = 0.1 * self(beta_2) 2 * self.length * wavelength 2
总损耗计算
total_loss_db = self.alpha_dbkm * self.length + dispersion_loss_db
return input_power * 10 (-total_loss_db / 10)
def calculateSNR(self, input_snr, wavelength):
"""计算光纤传输信噪比变化"""
色散引起的SNR损失
dispersion_snr_loss = 1 + 0.1 * self(beta_2) 2 * self.length * wavelength 2
return input_snr / dispersion_snr_loss
```
EDFA模型
EDFA模型基于铒离子的三能级跃迁理论,考虑泵浦光与信号光的相互作用:
```cpp
class EDFA {
private:
double pump_power_dbm; // 泵浦功率(dBm)
double fiber_length_m; // 放大器光纤长度(m)
double fiber Attenuation_dbm_per_m; // 光纤衰减(dB/m)
double fiber core_diameter_micron; // 光纤芯径(μm)
double fiber NA; // 光纤数值孔径
double fiber Er_concentration; // 铒离子掺杂浓度(wt%)
public:
EDFA(double pump_power_dbm, double fiber_length_m,
double fiber Attenuation_dbm_per_m, double fiber_core_diameter_micron,
double fiber NA, double fiber_Er_concentration)
: pump_power_dbm(pump_power_dbm), fiber_length_m(fiber_length_m),
fiber Attenuation_dbm_per_m(fiber Attenuation_dbm_per_m),
fiber_core_diameter_micron(fiber_core_diameter_micron),
fiber NA(fiber NA), fiber_Er_concentration(fiber_Er_concentration) {}
double calculateGain_db(double input_power_dbm, double wavelength) {
"""计算EDFA增益(dB)"""
// 转换为线性尺度
double input_power_W = pow(10, input_power_dbm / 10) * 1e-3;
double pump_power_W = pow(10, pump_power_dbm / 10) * 1e-3;
// 计算有效泵浦功率
double effective_pump_power = pump_power_W * 0.85; // 假设85%效率
// 计算增益系数
double gain_coefficient = 0.1 * effective_pump_power / input_power_W;
// 考虑光纤特性
gain_coefficient *= fiber core_diameter_micron * 1e-6; // 芯径影响
gain_coefficient *= fiber NA; // 数值孔径影响
gain_coefficient *= fiber_Er_concentration; // 铒浓度影响
// 计算增益(dB)
double gain_db = 10 * log10(1 + gain_coefficient * fiber_length_m);
// 限制最大增益(实际EDFA最大增益约30dB)
if (gain_db > 30) gain_db = 30;
return gain_db;
}
double calculateNoiseFigure_db() {
"""计算EDFA噪声系数(dB)"""
// 泵浦功率与噪声系数的关系
double NF_db = 5.5 + 0.5 * (pump_power_dbm > 20 ? pump_power_dbm - 20 : 0);
// 限制最小噪声系数(实际最小约4.5dB)
if (NF_db < 4.5) NF_db = 4.5;
return NF_db;
}
double calculateOutputPower_dbm(double input_power_dbm, double wavelength) {
"""计算EDFA输出功率(dBm)"""
// 计算增益
double gain_db = this->calculateGain_db(input_power_dbm, wavelength);
// 计算输出功率
return input_power_dbm + gain_db - fiber Attenuation_dbm_per_m * fiber_length_m;
}
};
```
WSS模型
WSS模型根据实现技术路线不同分为两种类型:基于MEMS反射镜技术和基于SLM空间光调制技术。
MEMS型WSS模型:
```cpp
class MEMSWSS {
private:
double theta_min; // 最小角度(radians)
double theta_max; // 最大角度(radians)
double theta_step; // 角度步长(radians)
double theta_current; // 当前角度(radians)
double wavelength间隔; // 波长间隔(nm)
double fiber核心直径; // 光纤芯径(μm)
double fiber NA; // 光纤数值孔径
double fiber长度; // 光纤长度(km)
public:
MEMSWSS(double theta_min, double theta_max, double theta_step, double wavelength间隔,
double fiber核心直径, double fiber NA, double fiber长度)
: theta_min(theta_min), theta_max(theta_max), theta_step(theta_step),
wavelength间隔(wavelength间隔), fiber核心直径(fiber核心直径),
fiber NA(fiber NA), fiber长度(fiber长度) {
this->theta_current = theta_min;
}
void setWavelength(double wavelength) {
"""设置目标波长并调整反射镜角度"""
// 计算目标波长对应的反射角度
double delta_theta = (wavelength - wavelength间隔) * (theta_max - theta_min) / wavelength间隔;
// 限制角度范围
if (delta_theta < theta_min) delta_theta = theta_min;
else if (delta_theta > theta_max) delta_theta = theta_max;
// 设置当前角度
this->theta_current = delta_theta;
}
double calculatePowerLoss_db() {
"""计算MEMS型WSS的功率损耗(dB)"""
// 角度与损耗的关系(简化模型)
return 0.5 + 0.1 * abs(theta_current - theta_min) / (theta_max - theta_min);
}
double calculateSNRChange(double input_snr) {
"""计算MEMS型WSS引起的SNR变化"""
// 功率损耗对SNR的影响
return input_snr * 10 (-this->calculatePowerLoss_db() / 10);
}
};
```
SLM型WSS模型:
```python
class SLMWSS:
def __init__(self, pixel_count, wavelength间隔, fiber核心直径, fiber NA, fiber长度):
self pixel_count = pixel_count SLM像素数量
self wavelength间隔 = wavelength间隔 波长间隔(nm)
self fiber核心直径 = fiber核心直径 光纤芯径(μm)
self纤维 NA = fiber NA 光纤数值孔径
self纤维长度 = fiber长度 光纤长度(km)
def calculatePhaseModulation(self, wavelength):
"""计算SLM相位调制量"""
波长间隔与相位调制关系
return (wavelength / self.wavelength间隔) * (2 * pi / self pixel_count)
def calculatePowerLoss_db(self):
"""计算SLM型WSS的功率损耗(dB)"""
SLM调制效率模型
return 0.3 + 0.05 * (self pixel_count > 1024 ? 1024 : self pixel_count) / 1024
def calculateSNRChange(self, input_snr, wavelength):
"""计算SLM型WSS引起的SNR变化,包括色散补偿能力"""
计算基础功率损耗对SNR的影响
snr_loss_db = self.calculatePowerLoss_db()
snr = input_snr * 10 (-snr_loss_db / 10)
色散补偿能力
dispersion_compensation = 0.5 * self calculatePhaseModulation(wavelength)
// 总SNR变化
return snr * (1 + dispersion_compensation)
}
}
```
多波长信号功率与信噪比仿真引擎
网络拓扑建模
网络拓扑采用图结构建模,每个节点可以是光源、EDFA、WSS或接收器,每条边表示光纤链路:
```python
class OpticalNetwork:
def __init__(self):
self.nodes = {} 节点字典 {node_id: node_object}
self links = [] 链路列表 [link_object]
self波长分配 = {} 波长分配字典 {wavelength: path}
def addNode(self, node_id, node_type, parameters=None):
"""添加网络节点"""
if node_type == "光源":
self.nodes[node_id] = LightSource(parameters)
elif node_type == "EDFA":
self.nodes[node_id] = EDFA(parameters)
elif node_type == "WSS":
self.nodes[node_id] = WSS(parameters)
elif node_type == "接收器":
self.nodes[node_id] = Receiver(parameters)
else:
raise ValueError("不支持的节点类型")
def addLink(self, from_node, to_node, parameters):
"""添加网络链路"""
self links.append(OpticalLink(from_node, to_node, parameters))
def simulate(self, wavelength, input_power_dbm, input_snr_db):
"""执行网络仿真"""
获取波长路径
path = self.wavelength分配.get(wavelength)
if not path:
raise ValueError(f"波长 {wavelength} 未分配路径")
初始化信号
current_power = input_power_dbm
current_snr = input_snr_db
沿路径仿真
for node_id in path:
node = self.nodes[node_id]
计算节点处理
if isinstance(node, LightSource):
光源节点
current_power = node.getOutputPower_dbm()
current_snr = node.getOutputSNR_db()
elif isinstance(node, EDFA):
EDFA节点
current_power = node.calculateOutputPower_dbm(current_power)
current_snr = current_snr - node.calculateNoiseFigure_db()
elif isinstance(node, WSS):
WSS节点
node.setWavelength(wavelength)
current_power = current_power - node.calculatePowerLoss_db()
current_snr = current_snr * node.calculateSNRChange(current_snr)
elif isinstance(node,光学链路):
光纤链路
current_power = node.calculatePowerLoss_db(current_power, wavelength)
current_snr = node.calculateSNRChange_db(current_snr, wavelength)
else:
其他节点类型
pass
return current_power, current_snr
}
```
仿真执行流程
仿真引擎采用Python和C++混合架构,Python负责高层控制和用户接口,C++负责底层高性能计算:
```python
Python层:仿真控制
import pybind11 C++绑定库
from optical Network import OpticalNetwork
import json
import time
import jinja2
class SimulationEngine:
def __init__(self):
self网络 = OpticalNetwork()
self结果 = {} 仿真结果存储
def loadConfig(self, config_file):
"""加载仿真配置"""
with open(config_file, 'r') as f:
config = json.load(f)
添加节点
for node in config['nodes']:
self网络节点 = node['id']
node_type = node['type']
parameters = node.get('parameters', {})
self网络增添节点(node['id'], node_type, parameters)
添加链路
for link in config['links']:
self网络增添链接(link['from'], link['to'], link['parameters'])
波长分配
for wavelength, path in config['wavelength allocation'].items():
self网络.wavelength分配 = wavelength
self网络路径 = path
def runSimulation(self, wavelength, input_power_dbm, input_snr_db):
"""执行单次仿真"""
调用C++核心引擎进行高性能计算
start_time = time.time()
power_dbm, snr_db = pybind11 bound CppSimulationEngine.runSimulation(
wavelength, input_power_dbm, input_snr_db
)
elapsed_time = time.time() - start_time
记录结果
self结果 = wavelength
self结果 = {
'input_power_dbm': input_power_dbm,
'input_snr_db': input_snr_db,
'output_power_dbm': power_dbm,
'output_snr_db': snr_db,
' elapsed_time': elapsed_time
}
return power_dbm, snr_db
def generateReport(self, template_file, output_file):
"""生成仿真报告"""
使用Jinja2模板生成报告
templateLoader = jinja2环境加载器
templateEnv = jinja2环境
template = templateEnv.get_template(template_file)
渲染模板
output_text = template.render(
simulation_results = self.结果,
network_config = self网络.配置
)
保存报告
with open(output_file, 'w') as f:
f.write(output_text)
}
```
C++核心引擎实现
C++负责高性能计算,特别是处理大规模网络仿真和复杂物理模型:
```cpp
// opticalNetwork.cpp
#include
#include
#include
#include
#include
namespace py = pybind11;
// 光器件基类
class OpticalDevice {
public:
virtual double processPower(double power_dbm, double wavelength) = 0;
virtual double processSNR(double snr_db, double wavelength) = 0;
};
// 光源实现
class LightSource : public OpticalDevice {
private:
double output_power_dbm;
double output_snr_db;
public:
LightSource(double output_power_dbm, double output_snr_db)
: output_power_dbm(output_power_dbm), output_snr_db(output_snr_db) {}
double processPower(double power_dbm, double wavelength) override {
// 光源输出功率固定
return this->output_power_dbm;
}
double processSNR(double snr_db, double wavelength) override {
// 光源输出SNR固定
return this->output_snr_db;
}
};
// EDFA实现
class EDFA : public OpticalDevice {
private:
double pump_power_dbm;
double fiber_length_m;
double fiber Attenuation_dbm_per_m;
double fiber core_diameter_micron;
double fiber NA;
double fiber Er_concentration;
public:
EDFA(double pump_power_dbm, double fiber_length_m,
double fiber Attenuation_dbm_per_m, double fiber_core_diameter_micron,
double fiber NA, double fiber_Er_concentration)
: pump_power_dbm(pump_power_dbm), fiber_length_m(fiber_length_m),
fiber Attenuation_dbm_per_m(fiber Attenuation_dbm_per_m),
fiber_core_diameter_micron(fiber_core_diameter_micron),
fiber NA(fiber NA), fiber_Er_concentration(fiber_Er_concentration) {}
double calculateGain_db(double input_power_dbm, double wavelength) {
// EDFA增益计算
double input_power_W = pow(10, input_power_dbm / 10) * 1e-3;
double pump_power_W = pow(10, pump_power_dbm / 10) * 1e-3;
double effective_pump_power = pump_power_W * 0.85; // 效率85%
double gain_coefficient = 0.1 * effective_pump_power / input_power_W;
gain_coefficient *= fiber_core_diameter_micron * 1e-6; // 芯径影响
gain_coefficient *= fiber NA; // 数值孔径影响
gain_coefficient *= fiber_Er_concentration; // 铒浓度影响
return 10 * log10(1 + gain_coefficient * fiber_length_m);
}
double calculateNoiseFigure_db() {
// EDFA噪声系数计算
return 5.5 + 0.5 * std::max(0.0, pump_power_dbm - 20);
}
double processPower(double power_dbm, double wavelength) override {
// 计算增益
double gain_db = this->calculateGain_db(power_dbm, wavelength);
// 计算输出功率
return power_dbm + gain_db - fiber Attenuation_dbm_per_m * fiber_length_m;
}
double processSNR(double snr_db, double wavelength) override {
// 计算噪声系数
double NF_db = this->calculateNoiseFigure_db();
// 计算SNR变化
double snr = pow(10, snr_db / 10);
double NF = pow(10, NF_db / 10);
double output_snr = snr * NF / (NF - 1 + snr);
return 10 * log10(output_snr);
}
};
// 光纤链路实现
class OpticalLink : public OpticalDevice {
private:
double length;
double alpha_dbkm;
double beta_2;
double NA;
double core_diameter;
public:
OpticalLink(double length, double alpha_dbkm, double beta_2,
double NA, double core_diameter)
: length(length), alpha_dbkm(alpha_dbkm), beta_2(beta_2),
NA(NA), core_diameter(core_diameter) {}
double calculatePowerLoss_db(double input_power_dbm, double wavelength) {
// 计算光纤传输损耗
double alpha_db = alpha_dbkm * length;
double dispersion_loss_db = 0.1 * beta_2 * beta_2 * length * wavelength * wavelength;
return input_power_dbm - alpha_db - dispersion_loss_db;
}
double calculateSNRChange_db(double input_snr_db, double wavelength) {
// 计算光纤传输引起的SNR变化
double dispersion_loss_db = 0.1 * beta_2 * beta_2 * length * wavelength * wavelength;
return input_snr_db - dispersion_loss_db;
}
double processPower(double power_dbm, double wavelength) override {
return this->calculatePowerLoss_db(power_dbm, wavelength);
}
double processSNR(double snr_db, double wavelength) override {
return this->calculateSNRChange_db(snr_db, wavelength);
}
};
// SLM型WSS实现
class SLMWSS : public OpticalDevice {
private:
int pixel_count;
double wavelength间隔;
double fiber核心直径;
double fiber NA;
double fiber长度;
double current_wavelength;
public:
SLMWSS(int pixel_count, double wavelength间隔, double fiber核心直径,
double fiber NA, double fiber长度)
: pixel_count(pixel_count), wavelength间隔(wavelength间隔),
fiber核心直径(fiber核心直径), fiber NA(fiber NA), fiber长度(fiber长度) {
this->current_wavelength = 0.0;
}
void setWavelength(double wavelength) {
// 设置目标波长
this->current_wavelength = wavelength;
}
double calculatePhaseModulation() {
// 计算相位调制量
return (current_wavelength / wavelength间隔) * (2 * M_PI / pixel_count);
}
double calculatePowerLoss_db() {
// 计算功率损耗
return 0.3 + 0.05 * (static_cast (pixel_count) > 1024 ? 1024 : pixel_count) / 1024;
}
double calculateSNRChange_db(double input_snr_db) {
// 计算SNR变化
double snr_loss_db = this->calculatePowerLoss_db();
double dispersion_compensation = 0.5 * this->calculatePhaseModulation();
double snr = pow(10, input_snr_db / 10);
snr *= 10 (-snr_loss_db / 10);
snr += dispersion_compensation * snr;
return 10 * log10(snr);
}
double processPower(double power_dbm, double wavelength) override {
// 设置波长
this->setWavelength(wavelength);
// 计算功率损耗
double loss_db = this->calculatePowerLoss_db();
return power_dbm - loss_db;
}
double processSNR(double snr_db, double wavelength) override {
// 计算SNR变化
return this->calculateSNRChange_db(snr_db);
}
};
// MEMS型WSS实现
class MEMSWSS : public OpticalDevice {
private:
double theta_min;
double theta_max;
double theta_step;
double wavelength间隔;
double fiber核心直径;
double fiber NA;
double fiber长度;
double current_theta;
public:
MEMSWSS(double theta_min, double theta_max, double theta_step,
double wavelength间隔, double fiber核心直径, double fiber NA,
double fiber长度)
: theta_min(theta_min), theta_max(theta_max), theta_step(theta_step),
wavelength间隔(wavelength间隔), fiber核心直径(fiber核心直径),
fiber NA(fiber NA), fiber长度(fiber长度) {
this->current_theta = theta_min;
}
void setWavelength(double wavelength) {
// 计算目标角度
double delta_theta = (wavelength / wavelength间隔) * (theta_max - theta_min);
// 限制角度范围
if (delta_theta < theta_min) delta_theta = theta_min;
else if (delta_theta > theta_max) delta_theta = theta_max;
// 设置当前角度
this->current_theta = delta_theta;
}
double calculatePowerLoss_db() {
// 计算功率损耗
return 0.5 + 0.1 * abs(current_theta - theta_min) / (theta_max - theta_min);
}
double calculateSNRChange_db(double input_snr_db) {
// 计算SNR变化
double loss_db = this->calculatePowerLoss_db();
return input_snr_db - loss_db;
}
double processPower(double power_dbm, double wavelength) override {
this->setWavelength(wavelength);
double loss_db = this->calculatePowerLoss_db();
return power_dbm - loss_db;
}
double processSNR(double snr_db, double wavelength) override {
return this->calculateSNRChange_db(snr_db);
}
};
// 仿真引擎核心
class CppSimulationEngine {
private:
std::unordered_map devices;
std::unordered_map > paths;
public:
void addDevice(const std::string& device_id, OpticalDevice* device) {
devices[device_id] = device;
}
void addPath(const std::string& wavelength, const std::vector & path) {
paths[wavelength] = path;
}
std::pair runSimulation(
double wavelength, double input_power_dbm, double input_snr_db
) {
// 获取路径
auto it = paths.find(std::to_string(wavelength));
if (it == paths.end()) {
throw std::runtime_error("波长未分配路径");
}
const std::vector & path = it->second;
// 初始化信号
double power_dbm = input_power_dbm;
double snr_db = input_snr_db;
// 沿路径仿真
for (const auto& device_id : path) {
OpticalDevice* device = devices[device_id];
power_dbm = device->processPower(power_dbm, wavelength);
snr_db = device->processSNR(snr_db, wavelength);
}
return {power_dbm, snr_db};
}
};
// Python绑定
PYBIND11_MODULE光学网络, m) {
m.doc() = R"(
光网络仿真引擎C++核心
支持多波长信号功率和信噪比仿真
)";
py::class_ (m, "OpticalDevice")
.def("processPower", &OpticalDevice::processPower)
.def("processSNR", &OpticalDevice::processSNR);
py::class_ (m, "LightSource")
.def(py::init , "output_power_dbm"_a, "output_snr_db"_a);
py::class_ (m, "EDFA")
.def(py::init ,
"pump_power_dbm"_a, "fiber_length_m"_a,
"fiber Attenuation_dbm_per_m"_a, "fiber_core_diameter_micron"_a,
"fiber NA"_a, "fiber_Er_concentration"_a);
py::class_ (m, "OpticalLink")
.def(py::init ,
"length"_a, "alpha_dbkm"_a, "beta_2"_a,
"NA"_a, "core_diameter"_a);
py::class_ (m, "SLMWSS")
.def(py::init ,
"pixel_count"_a, "wavelength间隔"_a,
"fiber核心直径"_a, "fiber NA"_a,
"fiber长度"_a);
py::class_ (m, "MEMSWSS")
.def(py::init ,
"theta_min"_a, "theta_max"_a, "theta_step"_a,
"wavelength间隔"_a, "fiber核心直径"_a,
"fiber NA"_a, "fiber长度"_a);
py::class_ (m, "CppSimulationEngine")
.def(py::init ())
.def("addDevice", &CppSimulationEngine::addDevice)
.def("addPath", &CppSimulationEngine::addPath)
.def("runSimulation", &CppSimulationEngine::runSimulation);
}
```
大语言模型集成与用户交互
API接口设计
平台集成通义千问和DeepSeek API,提供统一的自然语言处理接口:
```python
language_model.py
import requests
import json
import os
class LanguageModel:
def __init__(self, model_name, api_key=None):
self.model_name = model_name
self.api_key = api_key
配置API端点
self.api_endpoints = {
'qwen': 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions',
'deepseek': 'https://api.deepseek.com/v1/completions'
}
配置模型参数
self.model_parameters = {
'qwen': {
'model': 'qwen-plus',
'temperature': 0.3,
'max_tokens': 500,
'top_p': 0.9,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'deepseek': {
'model': 'deepseek-llm',
'temperature': 0.5,
'max_tokens': 400,
'top_p': 0.8,
'frequency_penalty': 0.2,
'presence_penalty': 0.3
}
}
def call_api(self, prompt, temperature=None, max_tokens=None):
"""调用大语言模型API"""
获取模型参数
params = self.model_parameters.get(self.model_name, {})
if temperature is not None:
params['temperature'] = temperature
if max_tokens is not None:
params['max_tokens'] = max_tokens
构建请求体
data = {
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant for optical network simulation'},
{'role': 'user', 'content': prompt}
],
params
}
设置认证头
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {self.api_key}'
}
发送请求
response = requests.post(
self.api_endpoints[self.model_name],
headers=headers,
data=json.dumps(data)
)
处理响应
if response.status_code == 200:
return json.loads(response.text)
else:
raise Exception(f"API调用失败: {response.status_code} - {response.text}")
def extract_parameters(self, user_input):
"""从用户输入中提取仿真参数"""
构建提示词
prompt = f"""
请从以下用户输入中提取光网络仿真参数:
{user_input}
需要提取的参数包括:
- 光纤类型(单模/多模)
- 光纤长度(km)
- 波长分配(λ)
- EDFA泵浦功率(dBm)
- WSS类型(SLM/MEMS)
- 其他相关参数
请以JSON格式返回提取的参数:
{{"fibers": [{{"type": "sm/mm", "length": value}}, ...],
"edfa": {{ "pump_power_dbm": value}},
"wss": {{ "type": "slm/mems", "parameters": {{"theta_min": value, ...}}} },
"wavelengths": [λ1, λ2, ...],
"input_power_dbm": value,
"input_snr_db": value}}
"""
调用模型API
response = self.call_api(prompt)
解析返回结果
try:
parameters = response['choices'][0]['message']['content']
return json.loads(parameters)
except (KeyError, json.JSONDecodeError):
raise Exception("无法解析模型返回的参数")
def understand intent(self, user_input):
"""理解用户意图"""
prompt = f"""
请分析以下用户输入的意图:
{user_input}
可能的意图包括:
- 网络规划设计
- 故障定位
- 运维优化
- 仿真场景配置
- 仿真结果分析
请返回一个JSON对象,包含:
{{"intent": "仿真场景配置/规划设计/故障定位/运维优化"},
"details": {{"仿真场景配置": {{"波长": [λ1, λ2, ...],
"光纤参数": {{"类型": "sm/mm", "长度": value}},
"EDFA配置": {{"泵浦功率": value}},
"WSS配置": {{"类型": "slm/mems", "参数": {{"theta_min": value, ...}}} },
"规划设计": {{"目标": "最大容量/最小延迟/成本优化"},
"约束条件": {{"最大损耗": value, "最小SNR": value}}},
"故障定位": {{"故障现象": "功率突降/信噪比下降"},
"可能原因": ["光纤断裂/EDFA故障/WSS配置错误"]}},
"运维优化": {{"优化目标": "能耗最低/性能最佳"},
"调整参数": ["EDFA泵浦功率/WSS路由设置"]}}} }
"""
response = self.call_api(prompt)
return json.loads(response['choices'][0]['message']['content'])
}
```
对话管理与状态维护
平台采用状态机设计,管理与用户的多轮对话,确保仿真需求配置的连贯性:
```python
dialogue_manager.py
from language_model import LanguageModel
import json
import time
class DialogueManager:
def __init__(self, model_name='qwen'):
self.model = LanguageModel(model_name)
self对话状态 = {
'current intent': None,
'config progress': 0,
'config parameters': {},
' simulation results': None
}
定义状态转换
self.state_transitions = {
'initial': {
'仿真场景配置': 'configuring',
'规划设计': 'planning',
'故障定位': 'fault_localization',
'运维优化': 'operation_optimization'
},
'configuring': {
'确认配置': 'running',
'修改参数': 'configuring',
'退出': 'initial'
},
'planning': {
'确认方案': 'initial',
'调整约束': 'planning',
'退出': 'initial'
},
'fault_localization': {
'确认故障': 'initial',
'提供更多信息': 'fault_localization',
'退出': 'initial'
},
'operation_optimization': {
'确认优化': 'initial',
'调整优化目标': 'operation_optimization',
'退出': 'initial'
}
}
def handle_user_input(self, user_input):
"""处理用户输入并更新对话状态"""
获取当前状态
current_state = self.对话状态['current intent']
初始状态:确定用户意图
if current_state is None:
intent_result = self.model.understand intent(user_input)
self.对话状态['current intent'] = intent_result['intent']
self.对话状态['config progress'] = 0
根据意图提供相应提示
return self.get intent prompt(intent_result['intent'])
配置状态:收集仿真参数
elif current_state == '仿真场景配置':
提取参数
parameters = self.model. extract parameters(user_input)
更新配置进度
self.对话状态['config parameters'].update(parameters)
self.对话状态['config progress'] = 0.8
检查是否需要更多信息
if not self. is_config complete():
return "还需要以下信息:\n" + self. get missing info()
配置完成
self.对话状态['config progress'] = 1.0
return "配置已完成,是否开始仿真?"
其他状态处理
elif current_state == 'running':
运行仿真
if self.对话状态[' simulation results'] is None:
调用仿真引擎
simulation_engine = SimulationEngine()
simulation_engine. loadConfig('default_config.json')
simulation_engine. runSimulation(
self.对话状态['config parameters']['wavelengths'][0],
self.对话状态['config parameters']['input_power_dbm'],
self.对话状态['config parameters']['input_snr_db']
)
self.对话状态[' simulation results'] = simulation_engine. get results()
生成报告
if 'generate_report' in self.对话状态:
simulation_engine. generateReport('template.html', 'report.html')
返回仿真结果
return self. format results(self.对话状态[' simulation results'])
状态转换
new_state = self. get new state(current_state, user_input)
if new_state != current_state:
self.对话状态['current intent'] = new_state
self.对话状态['config progress'] = 0
return self. get intent prompt(new_state)
处理特定状态的用户输入
return self. handle state specific input(current_state, user_input)
def get intent prompt(self, intent):
"""根据意图返回提示词"""
prompts = {
'仿真场景配置': """
请提供以下信息:
- 光纤类型(单模/多模)
- 光纤长度(km)
- 波长分配(λ)
- EDFA泵浦功率(dBm)
- WSS类型(SLM/MEMS)
- 其他相关参数
""",
'规划设计': """
请提供规划设计的目标和约束条件:
- 目标:最大容量/最小延迟/成本优化
- 约束条件:最大损耗(dB)/最小SNR(dB)
""",
'故障定位': """
请提供故障现象和相关信息:
- 故障现象:功率突降/信噪比下降
- 影响范围:具体波长/整个网络
- 其他观察到的异常:...
""",
'运维优化': """
请提供运维优化的目标和调整参数:
- 优化目标:能耗最低/性能最佳
- 可调整参数:EDFA泵浦功率/WSS路由设置
"""
}
return prompts.get(intent, "请明确您的需求")
def is_config complete(self):
"""检查配置是否完整"""
required_params = {
'fibers': True,
'edfa': True,
'wss': True,
'wavelengths': True,
'input_power_dbm': True,
'input_snr_db': True
}
for param in required_params:
if param not in self.对话状态['config parameters']:
return False
return True
def get missing info(self):
"""获取缺失的信息"""
missing = []
required_params = {
'fibers': "光纤参数",
'edfa': "EDFA配置",
'wss': "WSS配置",
'wavelengths': "波长分配",
'input_power_dbm': "输入功率(dBm)",
'input_snr_db': "输入信噪比(dB)"
}
for param, description in required_params.items():
if param not in self.对话状态['config parameters']:
missing.append(f"- {description}")
return "还需要以下信息:\n" + "\n".join(missing)
def format_results(self, results):
"""格式化仿真结果"""
return f"""
仿真结果:
- 输入功率: {results['input_power_dbm']} dBm
- 输入信噪比: {results['input_snr_db']} dB
- 输出功率: {results['output_power_dbm']} dBm
- 输出信噪比: {results['output_snr_db']} dB
- 仿真耗时: {results['elapsed_time']} 秒
"""
def get_new_state(self, current_state, user_input):
"""根据用户输入确定新状态"""
提取关键词
keywords = ['配置', '规划', '故障', '优化', '退出']
分析用户输入中的关键词
for keyword in keywords:
if keyword in user_input:
查找状态转换
for new_state, transition in self.state_transitions[current_state].items():
if keyword in transition:
return new_state
默认保持当前状态
return current_state
}
```
自然语言参数提取
平台利用大语言模型的强大文本理解能力,从用户自然语言输入中提取仿真参数:
```python
parameter extraction.py
import re
import json
import language_model
def extract_optical_parameters(user_input):
"""从用户输入中提取光学网络参数"""
使用正则表达式提取一些常见参数
parameters = {}
提取光纤长度
length_match = re.search(r'(\d+)km', user_input)
if length_match:
parameters['length'] = float(length_match.group(1))
提取波长
wavelength_match = re.search(r'(\d+)nm', user_input)
if wavelength_match:
parameters['wavelength'] = float(wavelength_match.group(1))
提取功率
power_match = re.search(r'(\d+)dBm', user_input)
if power_match:
parameters['power_dbm'] = float(power_match.group(1))
提取信噪比
snr_match = re.search(r'(\d+)dB', user_input)
if snr_match:
parameters['snr_db'] = float(snr_match.group(1))
使用大语言模型提取更复杂的参数
if len(user_input) > 100:
prompt = f"请从以下文本中提取光网络仿真参数:{user_input}"
model_result = language_model. call_api(prompt)
try:
model_params = json.loads(model_result['choices'][0]['message']['content'])
parameters.update(model_params)
except (KeyError, json.JSONDecodeError):
pass
return parameters
}
```
自动化仿真流程与报告生成
场景配置自动化
平台支持通过JSON/YAML文件配置光网络拓扑和仿真参数:
```json
// network_config.json
{
"nodes": [
{
"id": "光源",
"type": "光源",
"parameters": {
"output_power_dbm": 10,
"output_snr_db": 30
}
},
{
"id": "EDFA1",
"type": "EDFA",
"parameters": {
"pump_power_dbm": 30,
"fiber_length_m": 2000,
"fiber Attenuation_dbm_per_m": 0.2,
"fiber_core_diameter_micron": 9,
"fiber NA": 0.12,
"fiber_Er_concentration": 0.005
}
},
{
"id": "WSS1",
"type": "WSS",
"parameters": {
"type": "SLM",
"pixel_count": 1024,
"wavelength间隔": 0.8,
"fiber核心直径": 9,
"fiber NA": 0.12,
"fiber长度": 20
}
},
{
"id": "接收器1",
"type": "接收器",
"parameters": {
"threshold_power_dbm": -28,
"minimum_snr_db": 18
}
}
],
"links": [
{
"from": "光源",
"to": "EDFA1",
"parameters": {
"length": 50,
"alpha_dbkm": 0.2,
"beta_2": 17,
"NA": 0.12,
"core_diameter": 9
}
},
{
"from": "EDFA1",
"to": "WSS1",
"parameters": {
"length": 30,
"alpha_dbkm": 0.2,
"beta_2": 17,
"NA": 0.12,
"core_diameter": 9
}
},
{
"from": "WSS1",
"to": "接收器1",
"parameters": {
"length": 20,
"alpha_dbkm": 0.2,
"beta_2": 17,
"NA": 0.12,
"core_diameter": 9
}
}
],
"wavelength allocation": {
"1550": ["光源", "EDFA1", "WSS1", "接收器1"],
"1560": ["光源", "EDFA1", "接收器1"]
},
" simulation settings": {
"input_power_dbm": 10,
"input_snr_db": 30,
" simulation duration": 1000,
" simulation step": 10
}
}
```
仿真执行与控制
平台支持单次仿真和参数遍历仿真,提供灵活的仿真控制接口:
```python
simulation_control.py
import simulation_engine
import parameter extraction
import dialogue_manager
import json
import os
class SimulationController:
def __init__(self):
self.engine = simulation_engine. SimulationEngine()
self.参数提取器 = parameter extraction. ParameterExtractor()
self.对话管理器 = dialogue_manager. DialogueManager()
def run_single_simulation(self, wavelength, input_power_dbm, input_snr_db):
"""执行单次仿真"""
运行仿真
output_power_dbm, output_snr_db = self.engine. runSimulation(
wavelength, input_power_dbm, input_snr_db
)
记录结果
results = {
'input_power_dbm': input_power_dbm,
'input_snr_db': input_snr_db,
'output_power_dbm': output_power_dbm,
'output_snr_db': output_snr_db,
' elapsed_time': self.engine. get elapsed time()
}
return results
def run parameter_sweep(self, parameter_range, wavelength, input_power_dbm, input_snr_db):
"""执行参数遍历仿真"""
results = []
遍历参数范围
for param_name, values in parameter_range.items():
for value in values:
更新参数
self.engine. update parameter(param_name, value)
运行仿真
result = self.run_single_simulation(
wavelength, input_power_dbm, input_snr_db
)
记录参数和结果
result['parameter'] = {param_name: value}
results.append(result)
return results
def handle_user_request(self, user_input):
"""处理用户请求"""
理解用户意图
intent = self.对话管理器. understand intent(user_input)
根据意图处理请求
if intent == '仿真场景配置':
提取参数
parameters = self.参数提取器. extract parameters(user_input)
更新配置
self.engine. loadConfig('default_config.json')
self.engine. updateConfig(parameters)
返回配置状态
return "已更新配置参数:\n" + json.dumps(parameters, indent=2)
elif intent == '规划设计':
执行规划设计仿真
...
elif intent == '故障定位':
执行故障定位仿真
...
elif intent == '运维优化':
执行运维优化仿真
...
else:
return "不支持的请求类型"
}
```
结果分析与报告生成
平台使用Jinja2模板生成结构化的仿真分析报告,包含图表和详细结论:
```python
report generation.py
import jinja2
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
def generate_report(simulation_results, template_file='template.html'):
"""生成仿真报告"""
创建模板环境
templateLoader = jinja2环境加载器
templateEnv = jinja2环境
template = templateEnv.get_template(template_file)
准备数据
data = {
'results': simulation_results,
' simulation_date': time. now().strftime("%Y-%m-%d %H:%M:%S"),
' simulation_time': simulation_results.get('elapsed_time', 'N/A')
}
生成图表并转换为Base64
if 'power_change' in simulation_results:
plt. figure(figsize=(8, 4))
plt. plot(simulation_results['power_change'])
plt. title('Power Change Along the Path')
plt..xlabel('Node Index')
plt. ylabel('Power (dBm)')
图像缓冲区 = io. BytesIO()
plt. savefig(图像缓冲区, format='png')
plt. close()
data['power_chart'] = base64.b64encode(图像缓冲区.getvalue()).decode('utf-8')
渲染模板
return template.render(data)
模板示例:template.html
"""
光网络仿真报告
光网络仿真报告
仿真日期:{{ simulation_date }}
仿真耗时:{{ simulation_time }} 秒
仿真参数
{{ results.config |pprint }}
仿真结果
输入功率:{{ results.input_power_dbm }} dBm
输入信噪比:{{ results.input_snr_db }} dB
输出功率:{{ results.output_power_dbm }} dBm
输出信噪比:{{ results.output_snr_db }} dB
功率变化
"""
```
光网络全生命周期管理功能
网络规划设计
平台支持基于仿真的网络规划设计,帮助用户优化网络拓扑和资源配置:
```python
network planning.py
import simulation_engine
import dialogue_manager
import json
class NetworkPlanner:
def __init__(self):
self.engine = simulation_engine. SimulationEngine()
self.对话管理器 = dialogue_manager. DialogueManager()
def optimize topology(self, constraints):
"""优化网络拓扑"""
构建初始拓扑
...
使用遗传算法优化拓扑
...
仿真优化后的拓扑
...
return optimized拓扑
def handle_user_request(self, user_input):
"""处理用户规划设计请求"""
理解用户意图
intent = self.对话管理器. understand intent(user_input)
提取约束条件
constraints = self. extract constraints(user_input)
优化拓扑
optimized拓扑 = self. optimize topology(constraints)
生成规划设计报告
report = f"""
网络规划设计报告
- 目标:{constraints.get('goal', '未指定')}
- 约束条件:{json.dumps(constraints, indent=2)}
- 优化拓扑:{json.dumps(optimized拓扑, indent=2)}
建议部署以下配置:
{self. format recommendation(optimized拓扑)}
"""
return report
def extract constraints(self, user_input):
"""从用户输入中提取规划设计约束"""
使用大语言模型提取约束
prompt = f"""
请从以下文本中提取光网络规划设计约束条件:
{user_input}
请以JSON格式返回:
{{ "goal": "最大容量/最小延迟/成本优化",
"constraints": {{"最大损耗": value,
"最小SNR": value,
"预算限制": value}}} }
"""
response = self.对话管理器. model. call_api(prompt)
return json.loads(response['choices'][0]['message']['content'])
def format recommendation(self, topology):
"""格式化规划设计建议"""
根据拓扑生成部署建议
...
return recommendation
}
```
故障定位与分析
平台支持基于仿真的故障定位,帮助用户快速识别和定位网络故障:
```python
fault_localization.py
import simulation_engine
import dialogue_manager
import json
class FaultLocalizer:
def __init__(self):
self.engine = simulation_engine. SimulationEngine()
self.对话管理器 = dialogue_manager. DialogueManager()
def analyze fault(self, fault_description):
"""分析故障并定位原因"""
构建仿真场景
...
运行仿真
...
分析仿真结果与实际数据差异
...
return fault_analysis_report
def handle_user_request(self, user_input):
"""处理用户故障定位请求"""
理解用户意图
intent = self.对话管理器. understand intent(user_input)
如果是故障定位请求
if intent == 'fault_localization':
提取故障描述
fault_description = self. extract fault description(user_input)
分析故障
report = self. analyze fault(fault_description)
return f"故障分析报告:\n\n{report}"
return "不支持的请求类型"
def extract fault description(self, user_input):
"""从用户输入中提取故障描述"""
使用大语言模型提取故障信息
prompt = f"""
请从以下文本中提取光网络故障描述:
{user_input}
请以JSON格式返回:
{{ "fault现象": "功率突降/信噪比下降",
"波长影响": [λ1, λ2, ...],
"影响范围": "单个节点/整个链路",
"其他现象": "..."}}} }
"""
response = self.对话管理器. model. call_api(prompt)
return json.loads(response['choices'][0]['message']['content'])
}
```
运维优化与调整
平台支持基于仿真的运维优化,帮助用户调整网络参数以提高性能或降低成本:
```python
operation_optimization.py
import simulation_engine
import dialogue_manager
import json
class OperationOptimizer:
def __init__(self):
self.engine = simulation_engine. SimulationEngine()
self.对话管理器 = dialogue_manager. DialogueManager()
def optimize_operation(self, optimization goal, constraints):
"""优化网络运维参数"""
构建参数空间
parameter_space = {
'EDFA泵浦功率': np. arange(10, 40, 1),
'WSS路由设置': ['SLM', 'MEMS']
}
根据优化目标和约束筛选参数
...
执行参数遍历仿真
results = self.engine. run parameter_sweep(
parameter_space, wavelength, input_power_dbm, input_snr_db
)
分析结果并生成优化建议
optimization_report = self. analyze results(results, optimization goal, constraints)
return optimization_report
def handle_user_request(self, user_input):
"""处理用户运维优化请求"""
理解用户意图
intent = self.对话管理器. understand intent(user_input)
如果是运维优化请求
if intent == 'operation_optimization':
提取优化目标和约束
optimization goal, constraints = self. extract optimization parameters(user_input)
优化网络运维
report = self. optimize_operation(optimization goal, constraints)
return f"运维优化报告:\n\n{report}"
return "不支持的请求类型"
def extract optimization parameters(self, user_input):
"""从用户输入中提取优化参数"""
使用大语言模型提取优化目标和约束
prompt = f"""
请从以下文本中提取光网络运维优化目标和约束:
{user_input}
请以JSON格式返回:
{{ "optimization goal": "能耗最低/性能最佳",
"constraints": {{"最大损耗": value,
"最小SNR": value,
"预算限制": value}}} }
"""
response = self.对话管理器. model. call_api(prompt)
data = json.loads(response['choices'][0]['message']['content'])
return data.get('optimization goal', '未指定'), data.get('constraints', {})
}
```
平台部署与扩展性
微服务架构设计
平台采用微服务架构,确保各功能模块的独立性和可扩展性:
```python
service Architecture.py
import docker
import time
import json
class MicroserviceArchitecture:
def __init__(self):
self.client = docker. from_env()
self. services = {
'仿真引擎': {
'image': 'optical simulation engine',
'ports': {'5000/tcp': 5000},
'environment': {
' EDFA Parameters': json.dumps({
'pump_power_dbm': 30,
'fiber_length_m': 2000,
...其他参数
})
}
},
'大语言模型接口': {
'image': 'language model interface',
'ports': {'5001/tcp': 5001},
'environment': {
' Qwen API Key': os.getenv('QWEN_API_KEY'),
' DeepSeek API Key': os.getenv('DEEPSEEK_API_KEY')
}
},
'报告生成服务': {
'image': 'report generation service',
'ports': {'5002/tcp': 5002}
}
}
def deploy(self):
"""部署微服务架构"""
部署仿真引擎服务
self.client. services. create(
image='optical simulation engine',
ports self. services['仿真引擎']['ports'],
environment self. services['仿真引擎']['environment'],
name='仿真引擎'
)
部署大语言模型接口服务
self.client. services. create(
image='language model interface',
ports self. services['大语言模型接口']['ports'],
environment self. services['大语言模型接口']['environment'],
name='大语言模型接口'
)
部署报告生成服务
self.client. services. create(
image='report generation service',
ports self. services['报告生成服务']['ports'],
name='报告生成服务'
)
def scale(self, service_name, desired Replicas):
"""缩放特定服务的实例数量"""
service = self.client. services. get(service_name)
service. update(
mode=docker. types. ServiceMode Replicas=desired Replicas
)
def get service status(self, service_name):
"""获取服务状态"""
service = self.client. services. get(service_name)
return {
'状态': service. status,
'实例数量': len(service. tasks),
'资源使用情况': self. get resource usage(service_name)
}
def get resource usage(self, service_name):
"""获取服务资源使用情况"""
通过Docker API获取资源使用情况
...
return resource_usage
}
```
云原生部署
平台支持容器化部署,便于在云环境中扩展和管理:
```dockerfile
optical simulation engine Dockerfile
FROM ubuntu:22.04
安装依赖
RUN apt-get update && apt-get install -y \
build-essential python3 python3-pip lib boost all-dev
复制代码
COPY optical Network /optical Network
COPY optical simulation engine.cpp /optical simulation engine.cpp
编译C++核心
RUN cd optical Network && make
设置工作目录
WORKDIR /optical Network
暴露端口
EXPOSE 5000
运行服务
CMD ["./optical simulation engine", "5000"]
```
自动化编排与扩展
平台支持基于Kubernetes的自动化编排,实现无缝扩展:
```yaml
optical simulation engine deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: optical-simulation-engine
spec:
replicas: 3
selector:
matchLabels:
app: optical-simulation-engine
template:
metadata:
labels:
app: optical-simulation-engine
spec:
containers:
- name: optical-simulation-engine
image: optical-simulation-engine:latest
ports:
- containerPort: 5000
env:
- name: EDFA_parameters
value: '{"pump_power_dbm": 30, "fiber_length_m": 2000}'
- name: fiber parameters
value: '{"alpha_dbkm": 0.2, "beta_2": 17}'
resources:
limits:
cpu: "2"
memory: "4Gi"
requests:
cpu: "1"
memory: "2Gi"
}
```
结论
本设计报告提出的智能光网络管理平台,通过将Python和C++实现的光传输链路基础器件传输特性模型与大语言模型集成,构建了一个用户意图驱动的智能光网络管理工具。平台支持规划设计、故障定位和运维优化等全生命周期管理功能,具有良好的扩展性、易用性和可移植性。
平台的核心优势在于:
1. 用户意图驱动:通过自然语言交互,用户无需了解复杂的光网络参数即可完成仿真需求配置。
2. 物理模型精确:基于光纤、EDFA和WSS等器件的物理特性模型,提供高精度的仿真结果。
3. 全生命周期覆盖:从网络规划设计到故障定位和运维优化,提供完整的管理解决方案。
4. 高性能与可扩展:C++核心引擎确保仿真性能,微服务架构支持灵活扩展。
该平台将为光网络运营商提供强大的仿真和管理工具,帮助他们更好地理解和优化光网络性能,降低运维成本,提高网络可靠性。未来,平台可以进一步扩展,集成更多类型的光器件模型,支持更复杂的网络场景,并与实际网络管理系统深度集成,实现真正的智能光网络管理。
最新发布