题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$
题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最大公约数,再判断是否可以被整除就行了
卡点:无
C++ Code:
#include <cstdio>
#include <vector>
#define maxn 100010
std::vector<long long> v;
int n, sz;
long long s[maxn];
long long gcd(long long a, long long b) {return b ? gcd(b, a % b) : a;}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", s + i);
long long t = s[1];
for (long long i = 2; i * i <= t; i++) {
if (t % i == 0) {
while (t % i == 0) t /= i;
v.push_back(i);
sz++;
}
}
if (t > 1) v.push_back(t), sz++;
for (int i = 1; i <= n; i++) {
long long tmp = gcd(s[1], s[i]);
if (tmp == 1) printf("-1");
else {
for (int i = 0; i < sz; i++) if (tmp % v[i] == 0) {
printf("%lld", tmp / v[i]);
break;
}
}
putchar(i == n ? '\n' : ' ');
}
return 0;
}