39. Combination Sum - Medium

本文深入探讨了如何使用回溯法解决给定候选数集合和目标数,寻找所有可能的组合,使组合内的数之和等于目标数的问题。通过详细的代码示例,展示了算法的具体实现过程,包括剪枝优化策略,以及复杂度分析。

Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
  [7],
  [2,2,3]
]

Example 2:

Input: candidates = [2,3,5], target = 8,
A solution set is:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]

 

backtracking

每次递归到某个元素的时候,tmp中加入当前元素,target减去当前元素,当target=0的时候,把tmp加入res中

剪枝:排序+递归过程中判断当前元素是否大于target (大于就break)

s = target / min(nums[i]), T = C(s, 1) + C(s, 2) + ... + C(s, s) = 2^s  -> O(2^s)

time: O(2^s), space: O( target / min(nums[i]) )

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(candidates);
        backtracking(candidates, target, 0, new ArrayList<>(), res);
        return res;
    }
    
    private void backtracking(int[] candidates, int target, int idx, List<Integer> tmp, List<List<Integer>> res) {
        if(target == 0) res.add(new ArrayList<>(tmp));
        
        for(int i = idx; i < candidates.length; i++) {
            if(candidates[i] > target) break;
            tmp.add(candidates[i]);
            backtracking(candidates, target - candidates[i], i, tmp, res);
            tmp.remove(tmp.size() - 1);
        }
    }
}

 

转载于:https://www.cnblogs.com/fatttcat/p/10077957.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值