方差分析——单因素方差分析

一.基本概念

    记水平 Ai 下的 ni 个试验结果为 xij ,则

  

其中 εij是由各种无法控制的因素引起的随机误差

    上式说明,试验结果 xij 受到两方面的影响:

    ⑴因素 A 的水平 Ai 的均值 μi

    ⑵随机误差 εij

 

一般平均

为水平 Ai 的效应,反映了水平 Xi 的均值与一般平均的差异。

  从而要检验的原假设可改写为:

  

 

二.方差分析的基本方法

方差分析的基本思路

将因素的不同水平和随机误差对试验结果的影响进行分离,并比较两者中哪一个对试验结果 xij 的影响起主要作用。

若因素的不同水平对试验结果 xij 的影响是主要的,就拒绝 H0,说明因素 A 对试验结果有显著影响。

若试验结果 xij 中的差异主要是由随机误差引起的,就不能拒绝 H0,说明因素 A 对试验结果无显著影响。

1.总的偏差平方和

为总的偏差平方和

为便于对 ST 进行分解,记水平 Ai 下的样本均值为

反映了各样本(同一水平)内的数据差异,主要是由随机误差所引起的,称为误差平方和或组内平方和

反映了各样本(不同水平)间数据的差异,主要是由因素A的不同水平效应间的差异引起的,称为因素A的平方和组间平方和

利用 SA 和 Se 之比就可以构造出检验 H0 的统计量

就拒绝 H0,说明各水平 Ai 的效应间存在显著差异,或称因素 A 的作用是显著的。

由于 SA /(a-1) 和 Se /(N-a) 分别是组间数据和组内数据的样本方差,故称这种基于检验样本方差比的方法为方差分析

 

三.方差分析表

        单因素方差分析表



显著性水平
1个星号代表5%显著性水平
2个星号代表1%显著性水平
3个星号代表0.1%显著性水平
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值