ACM HDU 1017 A Mathematical Curiosity

本文探讨了一个数学问题,即在给定整数n和m的条件下,找出所有满足条件的整数对(a, b),使得0 < a < b < n且(a² + b² + m) / (ab)为整数。文章通过实例演示了解题过程,并提供了源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Mathematical Curiosity

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17031    Accepted Submission(s): 5306


Problem Description
Given two integers n and m, count the number of pairs of integers (a,b) such that 0 < a < b < n and (a^2+b^2 +m)/(ab) is an integer.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.
 
Input
You will be given a number of cases in the input. Each case is specified by a line containing the integers n and m. The end of input is indicated by a case in which n = m = 0. You may assume that 0 < n <= 100.
Output
For each case, print the case number as well as the number of pairs (a,b) satisfying the given property. Print the output for each case on one line in the format as shown below.
Sample Input
1
10 1
20 3
30 4
0 0
Sample Output
Case 1: 2
Case 2: 4
Case 3: 5
Source
 
Recommend
JGShining
 
 
#include<stdio.h>
int main()
{
    int n, m, times, count = 0, i, j, flag = 1;
    scanf("%d", &times);
    while(times--)
    {
        while(1)
        {
            scanf("%d%d", &n, &m);
            if(!n && !m) break;
            for(i=1; i<n; ++i)
            for(j=1; j<i; ++j)
            if((i*i+j*j+m)%(i*j) == 0) count++;
            printf("Case %d: %d\n", flag++, count);
            count = 0;
        }
        flag = 1;
        if(times != 0) printf("\n");
    }
    
return 0;
}

 

解题报告:

这题明显的水题,之所以会PE,我不会承认是我的错,只是把N跟第一组 input 之间的 Blank 忽略掉就没问题了。

转载于:https://www.cnblogs.com/liaoguifa/archive/2012/10/06/2713095.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值