POJ 1222 EXTENDED LIGHTS OUT

本文介绍了一种使用高斯消元法解决灯光游戏的策略,通过构建矩阵并进行运算,实现所有灯光关闭的目标。适用于不同大小的游戏布局。
部署运行你感兴趣的模型镜像


XOR高斯消元:

开启和关闭围绕每个灯5一个格子的影响,选择一些光线,使所有的灯关闭.

能够构建一个每一个灯对周围影响的30×30矩阵。矩阵的值等于原来的状态。

再用高斯消元求解每一个灯的状态。


EXTENDED LIGHTS OUT
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 6442 Accepted: 4228

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source

[Submit]   [Go Back]   [Status]   [Discuss]




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int a[40][40],ans[40];

void Gauss()
{
    for(int k=0;k<30;k++)
    {
        int mx=k;
        for(int i=k+1;i<30;i++)
            if(a[i][k]>a[mx][k])
                mx=i;
        if(mx)
        {
            for(int i=0;i<=30;i++)
                swap(a[mx][i],a[k][i]);
        }
        for(int i=0;i<30;i++)
        {
            if(i==k) continue;
            if(a[i][k])
            {
                for(int j=k;j<=30;j++)
                {
                    a[i][j]^=a[k][j];
                }
            }
        }
    }
    for(int i=0;i<30;i++) ans[i]=a[i][30];
}

int main()
{
    int T_T,cas=1;
    scanf("%d",&T_T);
    while(T_T--)
    {
        memset(a,0,sizeof(a));
        memset(ans,0,sizeof(ans));
        for(int i=0;i<5;i++)
        {
            for(int j=0;j<6;j++)
            {
                scanf("%d",&a[j+i*6][30]);
                a[j+i*6][j+i*6]=1;
                if(i-1>=0)
                    a[j+i*6][j+6*(i-1)]=1;
                if(i+1<5)
                    a[j+i*6][j+6*(i+1)]=1;
                if(j-1>=0)
                    a[j+i*6][j-1+i*6]=1;
                if(j+1<6)
                    a[j+i*6][j+1+i*6]=1;
            }
        }
        Gauss();
        printf("PUZZLE #%d\n",cas++);
        for(int i=0;i<30;i++)
        {
            if(i%6) putchar(32);
            printf("%d",ans[i]);
            if((i+1)%6==0) putchar(10);
        }
    }
    return 0;
}


版权声明:本文博客原创文章,博客,未经同意,不得转载。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值