动态规划---将一个整数m分成n个整数之和

本文介绍了一种将M个相同的苹果放入N个相同盘子的不同分配方法的算法实现。通过递归函数计算允许某些盘子为空的所有可能组合,并考虑了方案的顺序无关性。文章提供了具体的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:把 M 个同样的苹果放在 N 个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
注意:5、1、1 和 1、5、1 是同一种分法,即顺序无关。

思路:其实这根将一个整数m分成n个整数之和是类似的。
设f[m][n]为将m分成最多n份的方案数,且其中的方案不重复,即每个方案前一个份的值一定不会比后面的大。
则有:
f[m][n] = f[m][n - 1] + f[m - n][n];
           = 1 // m== 0 || n == 1
           = 0 // m < 0
f[m][n - 1]相当于第一盘子中为0,只用将数分成n - 1份即可。因为0不会大于任何数,相当于f[m][n - 1]中的方案前面加一个为0的盘子,而且不违背f的定义。所以f[m][n - 1]一定是f[m][n]的方案的一部分,即含有0的方案数。
f[m - n][n]相当于在每个盘子中加一个数1。因为每个盘子中加一个数1不会影响f[m][n - 1]中的方案的可行性,也不会影响f的定义。所以f[m - n][n]一定是f[m][n]的方案的一部分,即不含有0的方案数。

#include<iostream>
#include<cstdio>
using namespace std;
int a[15][15];
int f(int n,int m)
{
    if(n<0) return 0;
    if(n==0||m==1) return 1;
    return f(n,m-1)+f(n-m,m);//有0和无0
}
int main()
{
    int pl;scanf("%d",&pl);
    while(pl--)
    {
        int n,m;scanf("%d%d",&n,&m);
        printf("%d/n",f(n,m));
    }
    return 0;
}

提交代码未通过!!!!!还不知道原因

转载于:https://www.cnblogs.com/maowuyu-xb/p/6426267.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值