HDU 4408 Minimum Spanning Tree 第37届ACM/ICPC 金华赛区网络赛1009 题 (最小生成树计数)...

本文介绍了一种计算带权无向图中最小生成树数量的方法。通过Prim和Kruskal算法,解决当存在多个可能的最小生成树时,如何确定其具体数目。使用邻接矩阵和并查集数据结构来实现算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Minimum Spanning Tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 205    Accepted Submission(s): 65


Problem Description
XXX is very interested in algorithm. After learning the Prim algorithm and Kruskal algorithm of minimum spanning tree, XXX finds that there might be multiple solutions. Given an undirected weighted graph with n (1<=n<=100) vertexes and m (0<=m<=1000) edges, he wants to know the number of minimum spanning trees in the graph.
 

 

Input
There are no more than 15 cases. The input ends by 0 0 0.
For each case, the first line begins with three integers --- the above mentioned n, m, and p. The meaning of p will be explained later. Each the following m lines contains three integers u, v, w (1<=w<=10), which describes that there is an edge weighted w between vertex u and vertex v( all vertex are numbered for 1 to n) . It is guaranteed that there are no multiple edges and no loops in the graph.
 

 

Output
For each test case, output a single integer in one line representing the number of different minimum spanning trees in the graph.
The answer may be quite large. You just need to calculate the remainder of the answer when divided by p (1<=p<=1000000000). p is above mentioned, appears in the first line of each test case.
 

 

Sample Input
5 10 12 2 5 3 2 4 2 3 1 3 3 4 2 1 2 3 5 4 3 5 1 3 4 1 1 5 3 3 3 2 3 0 0 0
 

 

Sample Output
4
 

 

Source
 

 

Recommend
zhoujiaqi2010
 
 
 
网上找的代码,修改了下AC了。。。
好坑啊。。。。杯具了
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define N 405
#define M 4005
#define E
#define inf 0x3f3f3f3f
#define dinf 1e10
#define linf (LL)1<<60
#define LL long long
#define clr(a,b) memset(a,b,sizeof(a))
using namespace std;

LL mod;
struct Edge
{
    int a,b,c;
    bool operator<(const Edge & t)const
    {
        return c<t.c;
    }
}edge[M];
int n,m;
LL ans;
int fa[N],ka[N],vis[N];
LL gk[N][N],tmp[N][N];
vector<int>gra[N];

int findfa(int a,int b[]){return a==b[a]?a:b[a]=findfa(b[a],b);}

LL det(LL a[][N],int n)
{
    for(int i=0;i<n;i++)for(int j=0;j<n;j++)a[i][j]%=mod;
    long long ret=1;
    for(int i=1;i<n;i++)
    {
        for(int j=i+1;j<n;j++)
            while(a[j][i])
            {
                LL t=a[i][i]/a[j][i];
                for(int k=i;k<n;k++)
                    a[i][k]=(a[i][k]-a[j][k]*t)%mod;
                for(int k=i;k<n;k++)
                    swap(a[i][k],a[j][k]);
                ret=-ret;
            }
        if(a[i][i]==0)return 0;
        ret=ret*a[i][i]%mod;
        //ret%=mod;
    }
    return (ret+mod)%mod;
}

int main()
{
    while(scanf("%d%d%I64d",&n,&m,&mod)==3)
    {

        if(n==0 && m==0 && mod==0)break;

        memset(gk,0,sizeof(gk));
        memset(tmp,0,sizeof(tmp));
        memset(fa,0,sizeof(fa));
        memset(ka,0,sizeof(ka));
        memset(tmp,0,sizeof(tmp));

        for(int i=0;i<N;i++)gra[i].clear();
        for(int i=0;i<m;i++)
            scanf("%d%d%d",&edge[i].a,&edge[i].b,&edge[i].c);
        sort(edge,edge+m);
        for(int i=1;i<=n;i++)fa[i]=i,vis[i]=0;
        int pre=-1;
        ans=1;
        for(int h=0;h<=m;h++)
        {
            if(edge[h].c!=pre||h==m)
            {
                for(int i=1;i<=n;i++)
                    if(vis[i])
                    {
                        int u=findfa(i,ka);
                        gra[u].push_back(i);
                        vis[i]=0;
                    }
                for(int i=1;i<=n;i++)
                    if(gra[i].size()>1)
                    {
                        for(int a=1;a<=n;a++)
                            for(int b=1;b<=n;b++)
                                tmp[a][b]=0;
                        int len=gra[i].size();
                        for(int a=0;a<len;a++)
                            for(int b=a+1;b<len;b++)
                            {
                                int la=gra[i][a],lb=gra[i][b];
                                tmp[a][b]=(tmp[b][a]-=gk[la][lb]);
                                tmp[a][a]+=gk[la][lb];tmp[b][b]+=gk[la][lb];
                            }
                        long long ret=(long long)det(tmp,len);
                        ret%=mod;
                        ans=(ans*ret%mod)%mod;
                        for(int a=0;a<len;a++)fa[gra[i][a]]=i;
                    }
                for(int i=1;i<=n;i++)
                {
                    ka[i]=fa[i]=findfa(i,fa);
                    gra[i].clear();
                }
                if(h==m)break;
                pre=edge[h].c;
            }
            int a=edge[h].a,b=edge[h].b;
            int pa=findfa(a,fa),pb=findfa(b,fa);
            if(pa==pb)continue;
            vis[pa]=vis[pb]=1;
            ka[findfa(pa,ka)]=findfa(pb,ka);
            gk[pa][pb]++;gk[pb][pa]++;
        }
        int flag=0;
        for(int i=2;i<=n&&!flag;i++)if(ka[i]!=ka[i-1])flag=1;
        ans%=mod;
        printf("%I64d\n",flag?0:ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值