Gluon 实现 dropout 丢弃法

本文详细介绍了如何使用多层感知机(MLP)和Dropout技术在Fashion MNIST数据集上进行图像分类。通过定义网络结构、加载数据、设置超参数和训练模型,展示了完整的深度学习项目流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多层感知机中:

hi 以 p 的概率被丢弃,以 1-p 的概率被拉伸,除以  1 - p

import mxnet as mx
import sys
import os
import time
import gluonbook as gb
from mxnet import autograd,init
from mxnet import nd,gluon
from mxnet.gluon import data as gdata,nn
from mxnet.gluon import loss as gloss


'''
# 模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784,10,256,256

W1 = nd.random.normal(scale=0.01,shape=(num_inputs,num_hiddens1))
b1 = nd.zeros(num_hiddens1)

W2 = nd.random.normal(scale=0.01,shape=(num_hiddens1,num_hiddens2))
b2 = nd.zeros(num_hiddens2)

W3 = nd.random.normal(scale=0.01,shape=(num_hiddens2,num_outputs))
b3 = nd.zeros(num_outputs)

params = [W1,b1,W2,b2,W3,b3]

for param in params:
    param.attach_grad()

# 定义网络

'''
# 读取数据
# fashionMNIST 28*28 转为224*224
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
        '~', '.mxnet', 'datasets', 'fashion-mnist')):
    root = os.path.expanduser(root)  # 展开用户路径 '~'。
    transformer = []
    if resize:
        transformer += [gdata.vision.transforms.Resize(resize)]
    transformer += [gdata.vision.transforms.ToTensor()]
    transformer = gdata.vision.transforms.Compose(transformer)
    mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
    mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
    num_workers = 0 if sys.platform.startswith('win32') else 4
    train_iter = gdata.DataLoader(
        mnist_train.transform_first(transformer), batch_size, shuffle=True,
        num_workers=num_workers)
    test_iter = gdata.DataLoader(
        mnist_test.transform_first(transformer), batch_size, shuffle=False,
        num_workers=num_workers)
    return train_iter, test_iter


# 定义网络
drop_prob1,drop_prob2 = 0.2,0.5
# Gluon版
net = nn.Sequential()
net.add(nn.Dense(256,activation="relu"),
        nn.Dropout(drop_prob1),
        nn.Dense(256,activation="relu"),
        nn.Dropout(drop_prob2),
        nn.Dense(10)
        )
net.initialize(init.Normal(sigma=0.01))



# 训练模型

def accuracy(y_hat, y):
    return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar()
def evaluate_accuracy(data_iter, net):
    acc = 0
    for X, y in data_iter:
        acc += accuracy(net(X), y)
    return acc / len(data_iter)


def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, trainer=None):
    for epoch in range(num_epochs):
        train_l_sum = 0
        train_acc_sum = 0
        for X, y in train_iter:
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            if trainer is None:
                gb.sgd(params, lr, batch_size)
            else:
                trainer.step(batch_size)  # 下一节将用到。
            train_l_sum += l.mean().asscalar()
            train_acc_sum += accuracy(y_hat, y)
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / len(train_iter),
                 train_acc_sum / len(train_iter), test_acc))


num_epochs = 5
lr = 0.5
batch_size = 256
loss = gloss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = load_data_fashion_mnist(batch_size)

trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':lr})
train(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,trainer)

 

转载于:https://www.cnblogs.com/TreeDream/p/10045913.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值