代码測试环境:Hadoop2.4
应用场景:当须要定制输出数据格式时能够採用此技巧,包含定制输出数据的展现形式。输出路径。输出文件名称称等。
Hadoop内置的输出文件格式有:
1)FileOutputFormat<K,V> 经常使用的父类。
2)TextOutputFormat<K,V> 默认输出字符串输出格式。
3)SequenceFileOutputFormat<K,V> 序列化文件输出;
4)MultipleOutputs<K,V> 能够把输出数据输送到不同的文件夹;
5) NullOutputFormat<K,V> 把输出输出到/dev/null中,即不输出不论什么数据。这个应用场景是在MR中进行了逻辑处理。同一时候输出文件已经在MR中进行了输出,而不须要在输出的情况;
6)LazyOutputFormat<K,V> 仅仅有在调用write方法是才会产生文件,这种话,假设没有调用write就不会产生空文件;
步骤:
相似输入数据格式,自己定义输出数据格式相同能够參考以下的步骤
1) 定义一个继承自OutputFormat的类,只是一般继承FileOutputFormat就可以;
2)实现其getRecordWriter方法,返回一个RecordWriter类型;
3)自己定义一个继承RecordWriter的类。定义其write方法。针对每一个<key,Value>写入文件数据。
实例1(改动文件默认的输出文件名称以及默认的key和value的分隔符):
输入数据:
自己定义CustomFileOutputFormat(把默认文件名称前缀替换掉):
package fz.outputformat;
import java.io.IOException;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class CustomOutputFormat extends FileOutputFormat<LongWritable, Text> {
private String prefix = "custom_";
@Override
public RecordWriter<LongWritable, Text> getRecordWriter(TaskAttemptContext job)
throws IOException, InterruptedException {
// 新建一个可写入的文件
Path outputDir = FileOutputFormat.getOutputPath(job);
// System.out.println("outputDir.getName():"+outputDir.getName()+",otuputDir.toString():"+outputDir.toString());
String subfix = job.getTaskAttemptID().getTaskID().toString();
Path path = new Path(outputDir.toString()+"/"+prefix+subfix.substring(subfix.length()-5, subfix.length()));
FSDataOutputStream fileOut = path.getFileSystem(job.getConfiguration()).create(path);
return new CustomRecordWriter(fileOut);
}
}
自己定义CustomWriter(指定key,value分隔符):
package fz.outputformat;
import java.io.IOException;
import java.io.PrintWriter;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
public class CustomRecordWriter extends RecordWriter<LongWritable, Text> {
private PrintWriter out;
private String separator =",";
public CustomRecordWriter(FSDataOutputStream fileOut) {
out = new PrintWriter(fileOut);
}
@Override
public void write(LongWritable key, Text value) throws IOException,
InterruptedException {
out.println(key.get()+separator+value.toString());
}
@Override
public void close(TaskAttemptContext context) throws IOException,
InterruptedException {
out.close();
}
}
调用主类:
package fz.outputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class FileOutputFormatDriver extends Configured implements Tool{
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
ToolRunner.run(new Configuration(), new FileOutputFormatDriver(),args);
}
@Override
public int run(String[] arg0) throws Exception {
if(arg0.length!=3){
System.err.println("Usage:\nfz.outputformat.FileOutputFormatDriver <in> <out> <numReducer>");
return -1;
}
Configuration conf = getConf();
Path in = new Path(arg0[0]);
Path out= new Path(arg0[1]);
boolean delete=out.getFileSystem(conf).delete(out, true);
System.out.println("deleted "+out+"?"+delete);
Job job = Job.getInstance(conf,"fileouttputformat test job");
job.setJarByClass(getClass());
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(CustomOutputFormat.class);
job.setMapperClass(Mapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks(Integer.parseInt(arg0[2]));
job.setReducerClass(Reducer.class);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
return job.waitForCompletion(true)?0:-1;
}
}
查看输出:
从输出结果能够看到输出格式以及文件名称确实依照预想输出了。
实例2(依据key和value值输出数据到不同文件夹):
自己定义主类(主类事实上就是改动了输出的方式而已):
package fz.multipleoutputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class FileOutputFormatDriver extends Configured implements Tool{
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
ToolRunner.run(new Configuration(), new FileOutputFormatDriver(),args);
}
@Override
public int run(String[] arg0) throws Exception {
if(arg0.length!=3){
System.err.println("Usage:\nfz.multipleoutputformat.FileOutputFormatDriver <in> <out> <numReducer>");
return -1;
}
Configuration conf = getConf();
Path in = new Path(arg0[0]);
Path out= new Path(arg0[1]);
boolean delete=out.getFileSystem(conf).delete(out, true);
System.out.println("deleted "+out+"?"+delete);
Job job = Job.getInstance(conf,"fileouttputformat test job");
job.setJarByClass(getClass());
job.setInputFormatClass(TextInputFormat.class);
// job.setOutputFormatClass(CustomOutputFormat.class);
MultipleOutputs.addNamedOutput(job, "ignore", TextOutputFormat.class,
LongWritable.class, Text.class);
MultipleOutputs.addNamedOutput(job, "other", TextOutputFormat.class,
LongWritable.class, Text.class);
job.setMapperClass(Mapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks(Integer.parseInt(arg0[2]));
job.setReducerClass(MultipleReducer.class);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
return job.waitForCompletion(true)?0:-1;
}
}
自己定义reducer(由于要依据key和value的值输出数据到不同文件夹,所以须要自己定义逻辑)
package fz.multipleoutputformat;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
public class MultipleReducer extends
Reducer<LongWritable, Text, LongWritable, Text> {
private MultipleOutputs<LongWritable,Text> out;
@Override
public void setup(Context cxt){
out = new MultipleOutputs<LongWritable,Text>(cxt);
}
@Override
public void reduce(LongWritable key ,Iterable<Text> value,Context cxt)throws IOException,InterruptedException{
for(Text v:value){
if(v.toString().startsWith("ignore")){
// System.out.println("ignore--------------------value:"+v);
out.write("ignore", key, v, "ign");
}else{
// System.out.println("other---------------------value:"+v);
out.write("other", key, v, "oth");
}
}
}
@Override
public void cleanup(Context cxt)throws IOException,InterruptedException{
out.close();
}
}
查看输出:
能够看到输出的数据确实依据value的不同值被写入了不同的文件文件夹中,可是这里相同能够看到有默认的文件生成,同一时候注意到这个文件的大小是0,这个临时还没解决。
总结:自己定义输出格式,能够定制一些特殊需求,只是一般使用Hadoop内置的输出格式就可以。这点来说其应用意义不是非常大。
只是使用Hadoop内置的MultipleOutputs能够依据数据的不同特性输出到不同的文件夹。还是非常有实际意义的。
分享。成长,快乐
转载请注明blog地址:http://blog.youkuaiyun.com/fansy1990