中国剩余定理

C++模数逆元求解
#include<bits/stdc++.h>
#define ll long long
#define gc getchar
inline ll read(){ll x = 0; char ch = gc(); bool positive = 1;for (; !isdigit(ch); 
ch = gc()) if (ch == '-')  positive = 0;for (; isdigit(ch); ch = gc())  x = x * 10 
+ ch - '0';return positive ? x : -x;}inline void write(ll a){if(a>=10)write(a/10);
putchar('0'+a%10);}inline void writeln(ll a){if(a<0){a=-a; putchar('-');}write(a);
puts("");}
using namespace std;
const int N = 11;
ll l,r,n;
ll m[N], M = 1,a[N], Mi;
void exgcd(ll a,ll b,ll &x , ll &y) {
    if(b) {
        exgcd(b, a % b, y, x);
        y -= a / b * x;
    }else {
        x = 1;
        y = 0;
    }
}
int main() {
    ll x, y, res = 0, ans = 0;
    n = read(), l = read(),r = read();
    for(int i = 1; i <= n; ++i)
        m[i] = read(), a[i] = read(), M *= m[i];
    for(int i = 1; i <= n; ++i) {
        Mi = M / m[i];
        exgcd(Mi, m[i], x, y);
        x = (x % m[i] + m[i]) % m[i];
        res = res + a[i] * Mi * x ;
    }
    res %= M;
    if(!res) res += M;
    if(res < l) res += (l - res - 1) / M * M + M;
    if(res <= r) ans = (r - res - 1) / M + 1;
    if(!ans) {
        puts("0\n0");
        return 0;
    }
    writeln(ans);
    writeln(res);
    return 0;
}

转载于:https://www.cnblogs.com/kcfzyhq/p/8857706.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值