1. 极小极大搜索方法
一般应用在博弈搜索中,比如:围棋,五子棋,象棋等。结果有三种可能:胜利、失败和平局。暴力搜索,如果想通过暴力搜索,把最终的结果得到的话,搜索树的深度太大了,机器不能满足,一般都是规定一个搜索的深度,在这个深度范围内进行深度优先搜索。
假设:A和B对弈,轮到A走棋了,那么我们会遍历A的每一个可能走棋方法,然后对于前面A的每一个走棋方法,遍历B的每一个走棋方法,然后接着遍历A的每一个走棋方法,如此下去,直到得到确定的结果或者达到了搜索深度的限制。当达到了搜索深度限制,此时无法判断结局如何,一般都是根据当前局面的形式,给出一个得分,计算得分的方法被称为评价函数,不同游戏的评价函数差别很大,需要很好的设计。
在搜索树中,表示A走棋的节点即为极大节点,表示B走棋的节点为极小节点。
如下图:A为极大节点,B为极小节点。称A为极大节点,是因为A会选择局面评分最大的一个走棋方法,称B为极小节点,是因为B会选择局面评分最小的一个走棋方法,这里的局面评分都是相对于A来说的。这样做就是假设A和B都会选择在有限的搜索深度内,得到的最好的走棋方法。
图-极大节点(A)与极小节点(B) 图-极大极小搜索
伪代码如下(来自维基百科):
// 如果能得到确定的结果或者深度为零,使用评估函数返回局面得分
if node is a terminal node or depth = 0
return the heuristic value of node
// 如果轮到对手走棋,是极小节点,选择一个得分最小的走法
if the adversary is to play at node
let α : = + ∞
foreach child of node
α : = min(α, minimax(child, depth - 1 ))
// 如果轮到我们走棋,是极大节点,选择一个得分最大的走法
el