C++实现的IO高效的算法TPIE

针对现代应用中数据规模庞大无法完全加载至内存的问题,本文介绍了使用C++实现的IO高效算法,如Berkeley DB Hash及TPIE等,旨在通过优化算法设计减少内外存间的数据交换,提高处理大规模几何数据集的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C++实现的IO高效的算法
类似的有berkeley DB Hash等
TPIE
The data sets involved in some modern applications are too large to fit in the main memory of even the
most powerful computers and must therefore reside on disk. Thus communication between internal and
external memory, and not actual computation time, often becomes the bottleneck in the computation.
This is due to the huge difference in access time of fast internal memory and slower external memory such
as disks. While typical access time of main memory is measured in nanoseconds, a typical access time of
a disk is on the order of milliseconds [20]. So roughly speaking there is a factor of a million difference in
the access time of internal and external memory. A good example of an applications involving massive
amounts of geometric data is NASA’s Earth Observation System (EOS) [29, 42], which is expected to
manipulate petabytes (thousands of terabytes, or millions of gigabytes) of data.
The goal of theoretical work in the area of external memory (EM) algorithms (also called I/O algorithms
or out-of-core algorithms) is to eliminate or minimize the I/O bottleneck through better algorithm
design.
具体的算法地址
http://www.cs.duke.edu/TPIE
http://www.madalgo.au.dk/Trac-tpie
TPIE, a Transparent Parallel I/O Environment, designed to assist programmers
in writing high performance I/O-efficient programs for a variety of platforms.
这个算法对IO进行了抽象,实现了栈、B树等算法
效率的测试方法
http://algo2.iti.kit.edu/dementiev/stxxl/trunk/containers_2berkeley__db__benchmark_8cpp-example.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值