keras用vgg16做图像分类

本文介绍如何使用VGG16预训练模型进行迁移学习,实现图像分类任务。通过加载训练集和测试集,对图像进行预处理,并利用Keras搭建深度学习模型,最终完成模型训练与预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实际上我只是提供一个模版而已,代码应该很容易看得懂,label是存在一个csv里面的,图片是在一个文件夹里面的

没GPU的就不用尝试了,训练一次要很久很久。。。

## import libaries
import pandas as pd
import numpy as np
from skimage import io
import os, sys
from tqdm import tqdm

## load data
train = pd.read_csv('./data/data/train.csv')
test = pd.read_csv('./data/data/test.csv')

def read_img(img_path):
    img = io.imread(img_path)
    return img

## set path for images
TRAIN_PATH = './data/data/train_img/'
TEST_PATH = './data/data/test_img/'


# load data
train_img, test_img = [],[]
for img_path in tqdm(train['image_id'].values):
    train_img.append(read_img(TRAIN_PATH + img_path + '.png'))

for img_path in tqdm(test['image_id'].values):
    test_img.append(read_img(TEST_PATH + img_path + '.png'))

# normalize images
x_train = np.array(train_img, np.float32) / 255.
x_test = np.array(test_img, np.float32) / 255.

# target variable - encoding numeric value
label_list = train['label'].tolist()
Y_train = {k:v+1 for v,k in enumerate(set(label_list))}
y_train = [Y_train[k] for k in label_list]   
y_train = np.array(y_train)


from keras import applications
from keras.models import Model
from keras import optimizers
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.metrics import categorical_accuracy
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint

y_train = to_categorical(y_train)

#Transfer learning with Inception V3 
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(256, 256, 3))

## set model architechture 
add_model = Sequential()
add_model.add(Flatten(input_shape=base_model.output_shape[1:]))
add_model.add(Dense(256, activation='relu'))
add_model.add(Dense(y_train.shape[1], activation='softmax'))

model = Model(inputs=base_model.input, outputs=add_model(base_model.output))
model.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
            metrics=['accuracy'])

model.summary()

batch_size = 128 # tune it
epochs = 30 # increase it
print ("Hello")
train_datagen = ImageDataGenerator(
        shear_range=0.2,
        zoom_range=0.2,
        rotation_range=30, 
        width_shift_range=0.1,
        height_shift_range=0.1, 
        horizontal_flip=True)
train_datagen.fit(x_train)

history = model.fit_generator(
    train_datagen.flow(x_train, y_train, batch_size=batch_size),
    steps_per_epoch=x_train.shape[0] // batch_size,
    epochs=epochs,
    callbacks=[ModelCheckpoint('VGG16-transferlearning2.model', monitor='val_acc', save_best_only=True)]
)

## predict test data
predictions = model.predict(x_test)


# get labels
predictions = np.argmax(predictions, axis=1)
rev_y = {v:k for k,v in Y_train.items()}
pred_labels = [rev_y[k] for k in predictions]

## make submission
sub = pd.DataFrame({'image_id':test.image_id, 'label':pred_labels})
sub.to_csv('sub_vgg2.csv', index=False) ## ~0.59
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值