Little Bishops uva861

本文介绍了一个算法问题:如何在n×n的棋盘上放置k个象,使得任意两个象不在互相攻击的位置。文章给出了具体的实现代码,包括初始化棋盘、计算不同颜色方格上象的放置方式等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Little Bishops

 

A bishop is a piece used in the game of chess which is played on a board of square grids. A bishop can only move diagonally from its current position and two bishops attack each other if one is on the path of the other. In the following figure, the dark squares represent the reachable locations for bishop B1 form its current position.  The figure also shows that the bishops B1 and B2 are in attacking positions whereas B1 andB3 are not. B2 and B3 are also in non-attacking positions.

 

 

 

Now, given two numbers n and k, your job is to determine the number of ways one can put k bishops on an n × n chessboard so that no two of them are in attacking positions.

 

Input

 The input file may contain multiple test cases. Each test case occupies a single line in the input file and contains two integers n (1 ≤ n ≤ 8) and k(0 ≤ k ≤ n2).

 

A test case containing two zeros for n and k terminates the input and you won’t need to process this particular input.

 

Output

For each test case i

#include"iostream"
#include"cstring"
#include"algorithm"
using namespace std;
const int N=8;
int b[N+1],w[N+1],rb[N+1][65],rw[N+1][65];
void init_chessboard(int n)
{
    memset(b,0,sizeof(b));
    memset(w,0,sizeof(w));
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
    {
        if((i+j)&1)
           w[(i+j)>>1]++;
        else
           b[(i+j)>>1]++;
    } 
}
void bishops(int n,int k,int c[N+1],int R[N+1][65])
{
    for(int i=0;i<=n;i++)
      R[i][0]=1;
    for(int j=1;j<=k;j++)
        R[0][j]=0;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=c[i];j++)
        R[i][j]=R[i-1][j]+R[i-1][j-1]*(c[i]-j+1);
}
int main()
{
    int n,k,ans;
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        if(n==0&&k==0)
          break;
        init_chessboard(n);
        sort(b+1,b+n+1);
        sort(w+1,w+n);
        bishops(n,k,b,rb);
        bishops(n-1,k,w,rw);
        ans=0;
        for(int i=0;i<=k;i++)
          ans+=rb[n][i]*rw[n-1][k-i];
        printf("%d\n",ans);
    }
    return 0;
}

 

n the input print a line containing the total number of ways one can put the given number of bishops on a chessboard of the given size so that no two of them are in attacking positions. You may safely assume that this number will be less than 1015.

 

Sample Input
8 6
4 4
0 0

 

Sample Output
5599888
260

转载于:https://www.cnblogs.com/767355675hutaishi/p/3829594.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值