改进一维搜索

今天打算改进一维搜索算法

要求一维搜索类做到以下几点:
1.在失败时,能够返回失败的具体原因,以便根据不同情况分别处理
2.尽可能找到使得函数充分下降的步长

发现初始步长选得不是越小越好,太小的步长会出现数值误差,导致一维搜索出错
能够把参数记下来下次使用

当前采用了一些改进,包括
1. 在共轭梯度法和牛顿法中,强制限制每次迭代的参数最大增量,避免Hessian不定、半正定等情况导致的参数突变
2.  在共轭梯度法迭代过程中,参考上次迭代的步长作为初始步长
3. 在每一帧的解算中,利用上一帧第一次迭代的初始步长作为本帧第一次迭代的初始步长
4. 当牛顿法解H * dP = -G计算出的方向不为下降方向时,本次迭代直接采用梯度下降
5. 一维搜索估计函数最小值点时,若各种拟合方法均找不到合适的点,直接使用中点,而不是使用区间断点,避免迭代死循环

下一步测试一些比较复杂的例子,看模拟是否稳定。





转载于:https://www.cnblogs.com/dydx/p/4278201.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值